conv_mkldnn_op.cc 30.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/fluid/operators/conv_op.h"
#include "paddle/fluid/platform/mkldnn_helper.h"

18 19
#include "paddle/fluid/framework/data_layout_transform.h"

20 21 22
namespace paddle {
namespace operators {

23 24 25 26 27 28 29 30
using framework::DataLayout;
using mkldnn::memory;
using mkldnn::primitive;
using mkldnn::reorder;
using mkldnn::stream;
using platform::to_void_cast;
using platform::GetMKLDNNFormat;

31 32 33 34 35 36 37 38 39 40
class ConvMKLDNNHandler : public platform::MKLDNNHandler {
 public:
  ConvMKLDNNHandler(
      std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd,
      const platform::MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine,
      const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key) {
    conv_pd_ = conv_pd;
  }

41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
  ConvMKLDNNHandler(
      std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd,
      std::shared_ptr<mkldnn::convolution_backward_data::primitive_desc>
          conv_bwd_data_pd,
      std::shared_ptr<mkldnn::convolution_backward_weights::primitive_desc>
          conv_bwd_weights_pd,
      const platform::MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine,
      const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key),
        conv_pd_(conv_pd),
        conv_bwd_weights_pd_(conv_bwd_weights_pd),
        conv_bwd_data_pd_(conv_bwd_data_pd) {
    // If we are in Grad operatgor then update a key with BWD suffix to
    // distinguish from FWD memory primitives
    key_ += "-BWD";
  }

58
  size_t GetDstMemorySize() const {
59 60 61
    return conv_pd_->dst_primitive_desc().get_size();
  }

62
  size_t GetDiffWeightsMemorySize() const {
63 64 65
    return conv_bwd_weights_pd_->diff_weights_primitive_desc().get_size();
  }

66
  size_t GetDiffSourceMemorySize() const {
67 68 69
    return conv_bwd_data_pd_->diff_src_primitive_desc().get_size();
  }

70 71
  std::shared_ptr<mkldnn::memory> AcquireSrcMemoryFromWeightsPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
G
gongweibao 已提交
72
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
73 74 75 76 77 78 79 80
    auto src_pd = conv_bwd_weights_pd_->src_primitive_desc();
    auto user_pd = user_memory_p->get_primitive_desc();
    return this->AcquireMemory(src_pd, user_pd, user_memory_p,
                               "@weights-src_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffDstMemoryFromWeightsPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
G
gongweibao 已提交
81
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
    auto diff_dst_pd = conv_bwd_weights_pd_->diff_dst_primitive_desc();
    auto user_pd = user_memory_p->get_primitive_desc();
    return this->AcquireMemory(diff_dst_pd, user_pd, user_memory_p,
                               "@weights-diff_dst_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffWeightsMemoryFromWeightsPrimitive(
      void* ptr) {
    return this->AcquireMemoryFromPrimitive(
        conv_bwd_weights_pd_->diff_weights_primitive_desc(), ptr,
        "@diff_weights_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffDstMemoryFromDataPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
G
gongweibao 已提交
97
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
98 99 100 101 102 103 104 105
    auto diff_dst_pd = conv_bwd_data_pd_->diff_dst_primitive_desc();
    auto user_pd = user_memory_p->get_primitive_desc();
    return this->AcquireMemory(diff_dst_pd, user_pd, user_memory_p,
                               "@data-diff_dst_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireWeightsMemoryFromDataPrimitive(
      const std::shared_ptr<mkldnn::memory> user_weights_memory_p,
G
gongweibao 已提交
106
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
107 108 109 110 111 112
    auto weights_pd = conv_bwd_data_pd_->weights_primitive_desc();
    auto user_pd = user_weights_memory_p->get_primitive_desc();
    return this->AcquireMemory(weights_pd, user_pd, user_weights_memory_p,
                               "@data-weights_mem_p", pipeline);
  }

113 114 115 116 117
  std::shared_ptr<mkldnn::memory> AcquireResidualDataMemory(
      const mkldnn::memory::desc& md, void* ptr) {
    return this->AcquireMemory(md, ptr, "@user_residual_data_mem_p");
  }

118 119 120 121 122 123
  std::shared_ptr<mkldnn::memory> AcquireDiffSrcMemoryFromDataPrimitive(
      void* ptr) {
    return this->AcquireMemoryFromPrimitive(
        conv_bwd_data_pd_->diff_src_primitive_desc(), ptr, "@diff_src_mem_p");
  }

124 125 126 127 128 129 130
  std::shared_ptr<mkldnn::memory> AcquireDstMemoryFromPrimitive(void* ptr) {
    return this->AcquireMemoryFromPrimitive(conv_pd_->dst_primitive_desc(), ptr,
                                            "@dst_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireSrcMemoryFromPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
G
gongweibao 已提交
131
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
132 133 134 135 136 137 138 139
    auto src_pd = conv_pd_->src_primitive_desc();
    auto user_pd = user_memory_p->get_primitive_desc();
    return this->AcquireMemory(src_pd, user_pd, user_memory_p, "@src_mem_p",
                               pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireWeightsMemoryFromPrimitive(
      const std::shared_ptr<mkldnn::memory> user_weights_memory_p,
K
Krzysztof Binias 已提交
140 141
      std::vector<mkldnn::primitive>& pipeline,  // NOLINT
      bool is_persistent = false) {
142 143 144 145
    auto user_weights_pd = user_weights_memory_p->get_primitive_desc();
    auto weights_pd = conv_pd_->weights_primitive_desc();
    return this->AcquireMemory(weights_pd, user_weights_pd,
                               user_weights_memory_p, "@weights_mem_p",
K
Krzysztof Binias 已提交
146
                               pipeline, is_persistent);
147 148
  }

149 150 151 152 153 154 155 156 157
  std::shared_ptr<mkldnn::memory> AcquireBiasMemoryFromPrimitive(
      const std::shared_ptr<mkldnn::memory> user_bias_memory_p,
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
    auto user_bias_pd = user_bias_memory_p->get_primitive_desc();
    auto bias_pd = conv_pd_->bias_primitive_desc();
    return this->AcquireMemory(bias_pd, user_bias_pd, user_bias_memory_p,
                               "@bias_mem_p", pipeline);
  }

158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
  std::shared_ptr<mkldnn::convolution_forward> AcquireConvolution(
      std::shared_ptr<mkldnn::memory> src_memory_p,
      std::shared_ptr<mkldnn::memory> weights_memory_p,
      std::shared_ptr<mkldnn::memory> dst_memory_p) {
    auto prim_key = key_ + "@conv_p";
    auto conv_p = std::static_pointer_cast<mkldnn::convolution_forward>(
        dev_ctx_.GetBlob(prim_key));
    PADDLE_ENFORCE((conv_p != nullptr) || (is_reusing_ == false),
                   "Fail to find convolution primitive in device context");
    if (conv_p == nullptr) {
      conv_p = std::make_shared<mkldnn::convolution_forward>(
          *conv_pd_, *(src_memory_p), *(weights_memory_p.get()),
          *(dst_memory_p.get()));

      dev_ctx_.SetBlob(prim_key, conv_p);
    } else {
      is_reusing_ = true;
    }
    return conv_p;
  }

179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
  std::shared_ptr<mkldnn::convolution_forward> AcquireConvolution(
      std::shared_ptr<mkldnn::memory> src_memory_p,
      std::shared_ptr<mkldnn::memory> weights_memory_p,
      std::shared_ptr<mkldnn::memory> bias_memory_p,
      std::shared_ptr<mkldnn::memory> dst_memory_p) {
    auto prim_key = key_ + "@conv_p";
    auto conv_p = std::static_pointer_cast<mkldnn::convolution_forward>(
        dev_ctx_.GetBlob(prim_key));
    PADDLE_ENFORCE((conv_p != nullptr) || (is_reusing_ == false),
                   "Fail to find convolution primitive in device context");
    if (conv_p == nullptr) {
      conv_p = std::make_shared<mkldnn::convolution_forward>(
          *conv_pd_, *(src_memory_p), *(weights_memory_p.get()),
          *(bias_memory_p.get()), *(dst_memory_p.get()));

      dev_ctx_.SetBlob(prim_key, conv_p);
    } else {
      is_reusing_ = true;
    }
    return conv_p;
  }

201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
  std::shared_ptr<mkldnn::convolution_backward_weights>
  AcquireConvolutionBackwardWeights(
      std::shared_ptr<mkldnn::memory> src_memory_p,
      std::shared_ptr<mkldnn::memory> diff_dst_memory_p,
      std::shared_ptr<mkldnn::memory> diff_weights_memory_p) {
    auto prim_key = key_ + "@conv_bwd_weights_p";
    auto conv_bwd_weights_p =
        std::static_pointer_cast<mkldnn::convolution_backward_weights>(
            dev_ctx_.GetBlob(prim_key));
    PADDLE_ENFORCE(
        (conv_bwd_weights_p != nullptr) || (is_reusing_ == false),
        "Fail to find convolution bwd weights primitive in device context");
    if (conv_bwd_weights_p == nullptr) {
      // create backward conv primitive for weights
      conv_bwd_weights_p =
          std::make_shared<mkldnn::convolution_backward_weights>(
              *conv_bwd_weights_pd_, *src_memory_p, *diff_dst_memory_p,
              *diff_weights_memory_p);
      dev_ctx_.SetBlob(prim_key, conv_bwd_weights_p);
    } else {
      is_reusing_ = true;
    }
    return conv_bwd_weights_p;
  }

  std::shared_ptr<mkldnn::convolution_backward_data>
  AcquireConvolutionBackwardData(
      std::shared_ptr<mkldnn::memory> diff_dst_memory_p,
      std::shared_ptr<mkldnn::memory> weights_memory_p,
      std::shared_ptr<mkldnn::memory> diff_src_memory_p) {
    auto prim_key = key_ + "@conv_bwd_data_p";
    auto conv_bwd_data_p =
        std::static_pointer_cast<mkldnn::convolution_backward_data>(
            dev_ctx_.GetBlob(prim_key));
    PADDLE_ENFORCE(
        (conv_bwd_data_p != nullptr) || (is_reusing_ == false),
        "Fail to find convolution bwd data primitive in device context");
    if (conv_bwd_data_p == nullptr) {
      conv_bwd_data_p = std::make_shared<mkldnn::convolution_backward_data>(
          *conv_bwd_data_pd_, *diff_dst_memory_p, *weights_memory_p,
          *diff_src_memory_p);
      dev_ctx_.SetBlob(prim_key, conv_bwd_data_p);
    } else {
      is_reusing_ = true;
    }
    return conv_bwd_data_p;
  }

249 250
  // Generate keys for storing/retriving primitives for this operator
  // TODO(jczaja): Make hashing function more optimial
G
gongweibao 已提交
251 252 253 254 255 256
  static std::string GetHash(memory::dims& input_dims,     // NOLINT
                             memory::dims& weights_dims,   // NOLINT
                             std::vector<int>& strides,    // NOLINT
                             std::vector<int>& paddings,   // NOLINT
                             std::vector<int>& dilations,  // NOLINT
                             int groups, const std::string& suffix) {
257 258 259 260 261 262 263
    return dims2str(input_dims) + dims2str(weights_dims) + dims2str(strides) +
           dims2str(paddings) + dims2str(dilations) + std::to_string(groups) +
           suffix;
  }

 private:
  std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd_;
264 265 266 267
  std::shared_ptr<mkldnn::convolution_backward_weights::primitive_desc>
      conv_bwd_weights_pd_;
  std::shared_ptr<mkldnn::convolution_backward_data::primitive_desc>
      conv_bwd_data_pd_;
268 269
};

270
template <typename T>
271
class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
272 273 274 275 276
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");

K
Krzysztof Binias 已提交
277 278
    const bool is_test = ctx.Attr<bool>("is_test");

279 280
    auto& dev_ctx =
        ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();
281 282 283 284
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    auto* input = ctx.Input<Tensor>("Input");
    auto* filter = ctx.Input<Tensor>("Filter");
285
    auto* bias = ctx.HasInput("Bias") ? ctx.Input<Tensor>("Bias") : nullptr;
286 287
    auto* output = ctx.Output<Tensor>("Output");

288 289 290 291 292 293
    PADDLE_ENFORCE(input->layout() == DataLayout::kMKLDNN &&
                       input->format() != memory::format::format_undef,
                   "Wrong layout/format set for Input tensor");
    PADDLE_ENFORCE(filter->layout() == DataLayout::kMKLDNN &&
                       filter->format() != memory::format::format_undef,
                   "Wrong layout/format set for Filter tensor");
294 295 296 297 298 299 300 301 302 303 304
    PADDLE_ENFORCE(input->dims().size() == 4,
                   "Input must be with 4 dimensions, i.e. NCHW");
    PADDLE_ENFORCE(filter->dims().size() == 4,
                   "Filter must be with 4 dimensions, i.e. OIHW");
    if (bias) {
      PADDLE_ENFORCE(bias->layout() == DataLayout::kMKLDNN &&
                         bias->format() != memory::format::format_undef,
                     "Wrong layout/format set for Bias tensor");
      PADDLE_ENFORCE(bias->dims().size() == 1,
                     "Bias must only have 1 dimension, i.e. X");
    }
305 306 307 308

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
M
Michal Gallus 已提交
309
    bool fuse_relu = ctx.Attr<bool>("fuse_relu");
310
    bool fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
311 312
    int groups = ctx.Attr<int>("groups");

313
    // TODO(tpatejko): add support for dilation
314 315 316 317 318 319 320 321 322 323
    PADDLE_ENFORCE(
        dilations.size() == 2 && dilations[0] == 1 && dilations[1] == 1,
        "dilation in convolution is not implemented yet");

    const T* input_data = input->data<T>();
    const T* filter_data = filter->data<T>();

    std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
    std::vector<int> weights_tz =
        paddle::framework::vectorize2int(filter->dims());
324 325 326 327 328 329 330 331 332 333 334 335 336
    int g = std::max(groups, 1);
    if (g > 1) {
      int o = weights_tz[0];
      int i = weights_tz[1];
      int h = weights_tz[2];
      int w = weights_tz[3];
      weights_tz.resize(5);
      weights_tz[0] = g;
      weights_tz[1] = o / g;
      weights_tz[2] = i;
      weights_tz[3] = h;
      weights_tz[4] = w;
    }
337 338
    std::vector<int> dst_tz = paddle::framework::vectorize2int(output->dims());

339 340 341 342 343 344 345 346 347 348 349
    // Get unique name for storing MKLDNN primitives
    const std::string key = ConvMKLDNNHandler::GetHash(
        src_tz, weights_tz, strides, paddings, dilations, groups,
        ctx.op().Output("Output"));
    const std::string key_conv_pd = key + "@conv_pd";

    std::vector<primitive> pipeline;

    auto user_src_md = platform::MKLDNNMemDesc(
        {src_tz}, platform::MKLDNNGetDataType<T>(), input->format());
    auto user_weights_md = platform::MKLDNNMemDesc(
350 351
        {weights_tz}, platform::MKLDNNGetDataType<T>(),
        (g == 1) ? filter->format() : mkldnn::memory::format::goihw);
352 353 354 355 356

    /* create memory descriptor for convolution without specified format
     * ('any') which lets a primitive (convolution in this case) choose
     * the memory format preferred for best performance
     */
357 358 359 360
    std::string data_format = ctx.Attr<std::string>("data_format");
    auto chosen_memory_format =
        platform::data_format_to_memory_format(data_format);

361
    auto src_md = platform::MKLDNNMemDesc(
362
        src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
363
    auto weights_md = platform::MKLDNNMemDesc(
364 365
        weights_tz, platform::MKLDNNGetDataType<T>(),
        (g == 1) ? chosen_memory_format : mkldnn::memory::format::goihw);
366 367
    std::vector<int> bias_tz;  // TODO(mgallus): avoid empty vector creation.
                               // Currently used whenever bias is != nullptr.
368
    auto dst_md = platform::MKLDNNMemDesc(
369
        dst_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
370 371

    // create a conv primitive descriptor and save it for usage in backward
372 373 374 375 376
    std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd;
    if (bias) {
      bias_tz = paddle::framework::vectorize2int(bias->dims());
      auto bias_md = platform::MKLDNNMemDesc(
          bias_tz, platform::MKLDNNGetDataType<T>(), memory::format::x);
377 378
      conv_pd = ConvFwdPrimitiveDesc(src_md, weights_md, bias_md, dst_md,
                                     strides, paddings, mkldnn_engine,
379
                                     fuse_relu, fuse_residual_conn);
380
    } else {
381 382
      conv_pd =
          ConvFwdPrimitiveDesc(src_md, weights_md, dst_md, strides, paddings,
383
                               mkldnn_engine, fuse_relu, fuse_residual_conn);
384
    }
385 386
    // Save conv_pd/src_memory/weights_memory for backward pass
    dev_ctx.SetBlob(key_conv_pd, conv_pd);
387

388
    ConvMKLDNNHandler handler(conv_pd, dev_ctx, mkldnn_engine, key);
389

390 391 392 393 394 395
    // create mkldnn memory from input tensors (data/weights)
    auto user_src_memory_p =
        handler.AcquireSrcMemory(user_src_md, to_void_cast<T>(input_data));
    auto user_weights_memory_p = handler.AcquireWeightsMemory(
        user_weights_md, to_void_cast<T>(filter_data));

396 397 398 399 400 401 402 403 404
    // create reorder primitive if the input format is not the preferred one
    auto src_memory_p =
        handler.AcquireSrcMemoryFromPrimitive(user_src_memory_p, pipeline);
    auto weights_memory_p = handler.AcquireWeightsMemoryFromPrimitive(
        user_weights_memory_p, pipeline, is_test);
    auto output_data =
        output->mutable_data<T>(ctx.GetPlace(), handler.GetDstMemorySize());
    auto dst_memory_p =
        handler.AcquireDstMemoryFromPrimitive(to_void_cast<T>(output_data));
405

406
    if (fuse_residual_conn) {
407 408
      auto residual_param = ctx.Input<Tensor>("ResidualData");
      auto residual_param_data = residual_param->data<T>();
409

410 411 412 413 414 415
      PADDLE_ENFORCE(
          residual_param_data != nullptr,
          "Provide data if you want MKLDNN conv+elementwise_add fusion");
      PADDLE_ENFORCE_EQ(output->dims(), residual_param->dims(),
                        "Output and elementwise parameter need to have the "
                        "same dimension sizes");
416

417 418 419 420 421 422 423 424 425 426 427 428 429 430
      if (residual_param->format() != output->format()) {
        auto residual_data_tz =
            paddle::framework::vectorize2int(residual_param->dims());
        auto residual_data_type =
            paddle::framework::ToMKLDNNDataType(residual_param->type());

        auto user_residual_md = platform::MKLDNNMemDesc(
            residual_data_tz, residual_data_type, residual_param->format());
        auto user_residual_memory_p = handler.AcquireResidualDataMemory(
            user_residual_md, to_void_cast<T>(residual_param_data));
        platform::Reorder(*user_residual_memory_p, *dst_memory_p);
      } else {
        output->ShareDataWith(*residual_param);
      }
431 432
    }

433
    // create convolution op primitive
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
    std::shared_ptr<mkldnn::convolution_forward> conv_p;
    if (bias) {
      const T* bias_data = bias->data<T>();
      auto user_bias_md = platform::MKLDNNMemDesc(
          {bias_tz}, platform::MKLDNNGetDataType<T>(), memory::format::x);
      auto user_bias_memory_p =
          handler.AcquireBiasMemory(user_bias_md, to_void_cast<T>(bias_data));

      auto bias_memory_p =
          handler.AcquireBiasMemoryFromPrimitive(user_bias_memory_p, pipeline);
      conv_p = handler.AcquireConvolution(src_memory_p, weights_memory_p,
                                          bias_memory_p, dst_memory_p);
    } else {
      conv_p = handler.AcquireConvolution(src_memory_p, weights_memory_p,
                                          dst_memory_p);
    }
450 451

    // push primitive to stream and wait until it's executed
452
    pipeline.push_back(*conv_p);
453 454 455
    stream(stream::kind::eager).submit(pipeline).wait();

    output->set_layout(DataLayout::kMKLDNN);
456
    output->set_format(GetMKLDNNFormat(*dst_memory_p));
457
  }
458

459
 private:
460
  mkldnn::primitive_attr CreatePostOps(bool fuse_relu,
461
                                       bool fuse_residual_conn) const {
M
Michal Gallus 已提交
462 463
    mkldnn::primitive_attr conv_attr;
    mkldnn::post_ops post_operations;
464
    // Fusion with Elementwise layer relies on adding a sum post-operation with
465 466 467 468 469
    // the scale parameter. It is assumed that when fuse_residual_connection is
    // true, the output tensor contains the data coming from residual
    // connection. The result of this post_op is:
    // Output = scale * Output + Conv_Out.
    if (fuse_residual_conn) {
470 471 472 473 474 475 476 477 478 479 480
      post_operations.append_sum(1.0f);
    }
    // Fusion with ReLU layer is executed through the PostOps feature. Create a
    // PostOps object and configure it to execute an eltwise relu operation.
    if (fuse_relu) {
      constexpr float scale = 1.0f;
      constexpr float negative_slope = 0.0f;
      constexpr float placeholder = 0.0f;
      post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_relu,
                                     negative_slope, placeholder);
    }
M
Michal Gallus 已提交
481 482 483 484
    conv_attr.set_post_ops(post_operations);
    return conv_attr;
  }

485 486 487 488
  std::unique_ptr<mkldnn::convolution_forward::primitive_desc>
  ConvFwdPrimitiveDesc(const memory::desc& src, const memory::desc& weights,
                       const memory::desc& dst, const std::vector<int>& strides,
                       const std::vector<int>& paddings,
489
                       const mkldnn::engine& engine, const bool fuse_relu,
490
                       const bool fuse_residual_conn) const {
491 492 493
    memory::dims stride_dims = {strides[0], strides[1]};
    memory::dims padding_dims = {paddings[0], paddings[1]};

494 495 496 497
    auto conv_desc = mkldnn::convolution_forward::desc(
        mkldnn::prop_kind::forward, mkldnn::convolution_direct, src, weights,
        dst, stride_dims, padding_dims, padding_dims,
        mkldnn::padding_kind::zero);
498

499 500
    mkldnn::primitive_attr conv_attr =
        CreatePostOps(fuse_relu, fuse_residual_conn);
M
Michal Gallus 已提交
501 502 503

    auto p_conv_pd = new mkldnn::convolution_forward::primitive_desc(
        conv_desc, conv_attr, engine);
504

505 506
    return std::unique_ptr<mkldnn::convolution_forward::primitive_desc>(
        p_conv_pd);
507
  }
508 509 510 511 512 513

  std::unique_ptr<mkldnn::convolution_forward::primitive_desc>
  ConvFwdPrimitiveDesc(const memory::desc& src, const memory::desc& weights,
                       const memory::desc& bias, const memory::desc& dst,
                       const std::vector<int>& strides,
                       const std::vector<int>& paddings,
514
                       const mkldnn::engine& engine, const bool fuse_relu,
515
                       const bool fuse_residual_conn) const {
516 517 518 519 520 521 522 523
    memory::dims stride_dims = {strides[0], strides[1]};
    memory::dims padding_dims = {paddings[0], paddings[1]};

    auto conv_desc = mkldnn::convolution_forward::desc(
        mkldnn::prop_kind::forward, mkldnn::convolution_direct, src, weights,
        bias, dst, stride_dims, padding_dims, padding_dims,
        mkldnn::padding_kind::zero);

524 525
    mkldnn::primitive_attr conv_attr =
        CreatePostOps(fuse_relu, fuse_residual_conn);
M
Michal Gallus 已提交
526 527 528

    auto p_conv_pd = new mkldnn::convolution_forward::primitive_desc(
        conv_desc, conv_attr, engine);
529 530 531 532

    return std::unique_ptr<mkldnn::convolution_forward::primitive_desc>(
        p_conv_pd);
  }
533 534 535
};

template <typename T>
536
class ConvMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
537 538 539 540 541
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");

542 543
    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
544 545 546 547 548 549 550 551 552 553
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    const Tensor* input = ctx.Input<Tensor>("Input");
    const Tensor* filter = ctx.Input<Tensor>("Filter");
    const Tensor* output = ctx.Input<Tensor>("Output");
    const Tensor* output_grad =
        ctx.Input<Tensor>(framework::GradVarName("Output"));
    Tensor* input_grad = ctx.Output<Tensor>(framework::GradVarName("Input"));
    Tensor* filter_grad = ctx.Output<Tensor>(framework::GradVarName("Filter"));

554 555 556 557 558 559 560 561 562 563 564 565 566
    PADDLE_ENFORCE(input->layout() == DataLayout::kMKLDNN &&
                       input->format() != memory::format::format_undef,
                   "Wrong layout/format set for Input tensor");
    PADDLE_ENFORCE(filter->layout() == DataLayout::kMKLDNN &&
                       filter->format() != memory::format::format_undef,
                   "Wrong layout/format set for Filter tensor");
    PADDLE_ENFORCE(output->layout() == DataLayout::kMKLDNN &&
                       output->format() != memory::format::format_undef,
                   "Wrong layout/format set for Output tensor");
    PADDLE_ENFORCE(output_grad->layout() == DataLayout::kMKLDNN &&
                       output_grad->format() != memory::format::format_undef,
                   "Wrong layout/format set for output_grad tensor");

567 568 569 570
    if (!input_grad && !filter_grad) return;

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
571 572
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    int groups = ctx.Attr<int>("groups");
573 574 575 576 577 578 579 580 581 582 583 584

    const T* input_data = input->data<T>();
    const T* filter_data = filter->data<T>();
    const T* output_grad_data = output_grad->data<T>();
    T* input_grad_data = nullptr;
    T* filter_grad_data = nullptr;

    std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
    std::vector<int> weights_tz =
        paddle::framework::vectorize2int(filter->dims());
    std::vector<int> dst_tz = paddle::framework::vectorize2int(output->dims());

585
    // Get an unique name from "argument" name of "Output" variable
J
Jacek Czaja 已提交
586
    // as well as attributes of primitive to be created
587 588 589 590 591 592
    // This name will be used as key when saving info into device context
    const std::string key =
        ConvMKLDNNHandler::GetHash(src_tz, weights_tz, strides, paddings,
                                   dilations, groups, ctx.op().Input("Output"));

    const std::string key_conv_pd = key + "@conv_pd";
593
    std::vector<primitive> pipeline;
594

595 596 597 598 599 600 601
    // Create user memory descriptors
    auto user_src_md = platform::MKLDNNMemDesc(
        {src_tz}, platform::MKLDNNGetDataType<T>(), input->format());
    auto user_weights_md = platform::MKLDNNMemDesc(
        {weights_tz}, platform::MKLDNNGetDataType<T>(), filter->format());
    auto user_diff_dst_md = platform::MKLDNNMemDesc(
        {dst_tz}, platform::MKLDNNGetDataType<T>(), output_grad->format());
602 603 604 605 606

    /* create memory descriptor for conv backward without specified format
     * ('any') which lets a primitive (conv backward in this case) choose
     * the memory format preferred for best performance
     */
607 608 609 610
    std::string data_format = ctx.Attr<std::string>("data_format");
    auto chosen_memory_format =
        platform::data_format_to_memory_format(data_format);

611
    auto src_md = platform::MKLDNNMemDesc(
612
        src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
613
    auto diff_src_md = platform::MKLDNNMemDesc(
614
        src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
615
    auto weights_md = platform::MKLDNNMemDesc(
616
        weights_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
617
    auto diff_weights_md = platform::MKLDNNMemDesc(
618
        weights_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
619
    auto diff_dst_md = platform::MKLDNNMemDesc(
620
        dst_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
621

622
    // Retrieve conv_pd from device context
623 624 625
    auto conv_pd =
        std::static_pointer_cast<mkldnn::convolution_forward::primitive_desc>(
            dev_ctx.GetBlob(key_conv_pd));
626 627 628
    PADDLE_ENFORCE(conv_pd != nullptr,
                   "Fail to find conv_pd in device context");

629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
    // create backward convolution weights primitive descriptor
    auto conv_bwd_weights_desc = mkldnn::convolution_backward_weights::desc(
        mkldnn::convolution_direct, src_md, diff_weights_md, diff_dst_md,
        strides, paddings, paddings, mkldnn::padding_kind::zero);
    auto conv_bwd_weights_pd =
        std::make_shared<mkldnn::convolution_backward_weights::primitive_desc>(
            conv_bwd_weights_desc, mkldnn_engine, *conv_pd);

    // create backward convolution data primitive descriptor
    auto conv_bwd_data_desc = mkldnn::convolution_backward_data::desc(
        mkldnn::convolution_direct, diff_src_md, weights_md, diff_dst_md,
        strides, paddings, paddings, mkldnn::padding_kind::zero);
    auto conv_bwd_data_pd =
        std::make_shared<mkldnn::convolution_backward_data::primitive_desc>(
            conv_bwd_data_desc, mkldnn_engine, *conv_pd);

    ConvMKLDNNHandler handler(conv_pd, conv_bwd_data_pd, conv_bwd_weights_pd,
                              dev_ctx, mkldnn_engine, key);

    // create mkldnn memory from input tensors (data/weights)
    auto user_src_memory_p =
        handler.AcquireSrcMemory(user_src_md, to_void_cast<T>(input_data));
    auto user_weights_memory_p = handler.AcquireWeightsMemory(
        user_weights_md, to_void_cast<T>(filter_data));
    auto user_diff_dst_memory_p = handler.AcquireDiffDstMemory(
        user_diff_dst_md, to_void_cast<T>(output_grad_data));

656 657
    // create backward conv primitive for weights
    if (filter_grad) {
658 659
      auto src_memory_p = handler.AcquireSrcMemoryFromWeightsPrimitive(
          user_src_memory_p, pipeline);
660

661 662 663 664
      auto diff_dst_memory_4filter_p =
          handler.AcquireDiffDstMemoryFromWeightsPrimitive(
              user_diff_dst_memory_p, pipeline);

665
      const size_t size = handler.GetDiffWeightsMemorySize();
666 667
      filter_grad_data = filter_grad->mutable_data<T>(ctx.GetPlace(), size);

668 669 670 671 672 673 674 675 676
      auto diff_weights_memory_p =
          handler.AcquireDiffWeightsMemoryFromWeightsPrimitive(
              reinterpret_cast<void*>(filter_grad_data));

      auto conv_bwd_weights_p = handler.AcquireConvolutionBackwardWeights(
          src_memory_p, diff_dst_memory_4filter_p, diff_weights_memory_p);

      // push primitive to stream and wait until it's executed
      pipeline.push_back(*conv_bwd_weights_p);
677 678

      filter_grad->set_layout(DataLayout::kMKLDNN);
679
      filter_grad->set_format(GetMKLDNNFormat(*diff_weights_memory_p));
680 681 682
    }

    if (input_grad) {
683 684 685 686 687 688 689
      auto weights_memory_p = handler.AcquireWeightsMemoryFromDataPrimitive(
          user_weights_memory_p, pipeline);

      auto diff_dst_memory_4data_p =
          handler.AcquireDiffDstMemoryFromDataPrimitive(user_diff_dst_memory_p,
                                                        pipeline);

690
      const size_t size = handler.GetDiffSourceMemorySize();
691 692
      input_grad_data = input_grad->mutable_data<T>(ctx.GetPlace(), size);

693 694 695 696 697 698 699
      auto diff_src_memory_p = handler.AcquireDiffSrcMemoryFromDataPrimitive(
          reinterpret_cast<void*>(input_grad_data));

      auto conv_bwd_data_p = handler.AcquireConvolutionBackwardData(
          diff_dst_memory_4data_p, weights_memory_p, diff_src_memory_p);

      pipeline.push_back(*conv_bwd_data_p);
700 701

      input_grad->set_layout(DataLayout::kMKLDNN);
702
      input_grad->set_format(GetMKLDNNFormat(*diff_src_memory_p));
703
    }
704
    stream(stream::kind::eager).submit(pipeline).wait();
705 706 707 708 709 710 711 712 713
  }  // Compute()
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_KERNEL(conv2d, MKLDNN, ::paddle::platform::CPUPlace,
714
                   ops::ConvMKLDNNOpKernel<float>);
715 716

REGISTER_OP_KERNEL(conv2d_grad, MKLDNN, ::paddle::platform::CPUPlace,
717
                   ops::ConvMKLDNNGradOpKernel<float>);