sequence_layer_group.conf 2.2 KB
Newer Older
Z
zhangjinchao01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
#!/usr/bin/env python
# Copyright (c) 2016 Baidu, Inc. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from paddle.trainer_config_helpers import *

######################## data source ################################
dict_path = 'gserver/tests/Sequence/tour_dict_phrase.dict'
dict_file = dict()
for line_count, line in enumerate(open(dict_path, "r")):
    dict_file[line.strip()] = line_count

24 25 26 27 28
define_py_data_sources2(train_list='gserver/tests/Sequence/train.list',
                        test_list=None,
                        module='sequenceGen',
                        obj='process',
                        args={"dict_file":dict_file})
Z
zhangjinchao01 已提交
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59

settings(batch_size=5)
######################## network configure ################################
dict_dim = len(open(dict_path,'r').readlines())
word_dim = 128
hidden_dim = 256
label_dim = 3

data = data_layer(name="word", size=dict_dim)

emb = embedding_layer(input=data, size=word_dim)

# (lstm_input + lstm) is equal to lstmemory 
with mixed_layer(size=hidden_dim*4) as lstm_input:
    lstm_input += full_matrix_projection(input=emb)

lstm = lstmemory_group(input=lstm_input,
                       size=hidden_dim,
                       act=TanhActivation(),
                       gate_act=SigmoidActivation(),
                       state_act=TanhActivation(),
                       lstm_layer_attr=ExtraLayerAttribute(error_clipping_threshold=50))

lstm_last = last_seq(input=lstm)

with mixed_layer(size=label_dim, 
                 act=SoftmaxActivation(), 
                 bias_attr=True) as output:
    output += full_matrix_projection(input=lstm_last)

outputs(classification_cost(input=output, label=data_layer(name="label", size=1)))