uniform_random_op.cu 3.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
L
Luo Tao 已提交
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Q
qijun 已提交
14 15
#include <thrust/random.h>
#include <thrust/transform.h>
Y
Yi Wang 已提交
16 17
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
Q
qijun 已提交
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

namespace paddle {
namespace operators {

template <typename T>
struct UniformGenerator {
  T min_, max_;
  unsigned int seed_;

  __host__ __device__ UniformGenerator(T min, T max, int seed)
      : min_(min), max_(max), seed_(seed) {}

  __host__ __device__ T operator()(const unsigned int n) const {
    thrust::minstd_rand rng;
    rng.seed(seed_);
    thrust::uniform_real_distribution<T> dist(min_, max_);
    rng.discard(n);
    return dist(rng);
  }
};

// It seems that Eigen::Tensor::random in GPU will SEGFAULT.
// Use std::random and thrust::random(thrust is a std library in CUDA) to
// implement uniform random.
template <typename T>
Y
Yu Yang 已提交
43
class GPUUniformRandomKernel : public framework::OpKernel<T> {
Q
qijun 已提交
44 45
 public:
  void Compute(const framework::ExecutionContext& context) const override {
Y
Yancey1989 已提交
46
    framework::Tensor* tensor = nullptr;
Y
fix ci  
Yancey1989 已提交
47
    auto out_var = context.OutputVar("Out");
Y
Yancey1989 已提交
48 49 50
    if (out_var->IsType<framework::LoDTensor>()) {
      tensor = out_var->GetMutable<framework::LoDTensor>();
    } else if (out_var->IsType<framework::SelectedRows>()) {
Y
fix ci  
Yancey1989 已提交
51
      auto shape = context.Attr<std::vector<int>>("shape");
Y
Yancey1989 已提交
52 53 54
      tensor = out_var->GetMutable<framework::SelectedRows>()->mutable_value();
      tensor->Resize(framework::make_ddim(shape));
    } else {
Y
Yancey1989 已提交
55 56 57
      PADDLE_THROW(
          "uniform_random_op's output only"
          "supports SelectedRows and Tensor");
Y
Yancey1989 已提交
58
    }
Q
qijun 已提交
59
    T* data = tensor->mutable_data<T>(context.GetPlace());
Y
Pass CI  
Yu Yang 已提交
60
    unsigned int seed = static_cast<unsigned int>(context.Attr<int>("seed"));
Q
qijun 已提交
61 62 63 64
    if (seed == 0) {
      std::random_device rd;
      seed = rd();
    }
Y
Yu Yang 已提交
65 66
    T min = static_cast<T>(context.Attr<float>("min"));
    T max = static_cast<T>(context.Attr<float>("max"));
Q
qijun 已提交
67
    thrust::counting_iterator<unsigned int> index_sequence_begin(0);
68 69
    int64_t size = tensor->numel();
    thrust::transform(index_sequence_begin, index_sequence_begin + size,
Q
qijun 已提交
70 71 72 73 74 75 76
                      thrust::device_ptr<T>(data),
                      UniformGenerator<T>(min, max, seed));
  }
};

}  // namespace operators
}  // namespace paddle
Y
Yu Yang 已提交
77

Q
QI JUN 已提交
78 79 80
REGISTER_OP_CUDA_KERNEL(uniform_random,
                        paddle::operators::GPUUniformRandomKernel<float>,
                        paddle::operators::GPUUniformRandomKernel<double>);
81 82 83
REGISTER_OP_CUDA_KERNEL(uniform_random_batch_size_like,
                        paddle::operators::GPUUniformRandomKernel<float>,
                        paddle::operators::GPUUniformRandomKernel<double>);