test_reshape_op.py 15.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yibing Liu 已提交
17 18 19
import unittest
import numpy as np

Y
ying 已提交
20
from op_test import OpTest
21
import paddle
22
import paddle.fluid as fluid
J
joejiong 已提交
23 24
from paddle.fluid import compiler
from paddle.static import Program, program_guard
Y
Yibing Liu 已提交
25

C
caoying03 已提交
26

27
# situation 1: have shape( list, no tensor), no actual shape(Tensor)
C
caoying03 已提交
28 29
class TestReshapeOp(OpTest):
    def setUp(self):
30 31 32 33 34 35 36 37
        self.init_data()
        self.op_type = "reshape2"
        self.inputs = {"X": np.random.random(self.ori_shape).astype("float32")}
        self.attrs = {"shape": self.new_shape}
        self.outputs = {
            "Out": self.inputs["X"].reshape(self.infered_shape),
            'XShape': np.random.random(self.ori_shape).astype("float32")
        }
Y
ying 已提交
38

39
    def init_data(self):
Z
zhupengyang 已提交
40 41 42
        self.ori_shape = (2, 60)
        self.new_shape = (12, 10)
        self.infered_shape = (12, 10)
43 44

    def test_check_output(self):
45
        self.check_output(no_check_set=['XShape'])
46 47 48 49 50

    def test_check_grad(self):
        self.check_grad(["X"], "Out")


51 52
class TestReshapeOpDimInfer1(TestReshapeOp):
    def init_data(self):
Z
zhupengyang 已提交
53
        self.ori_shape = (5, 25)
54 55
        self.new_shape = (5, -1, 5)
        self.infered_shape = (5, -1, 5)
C
caoying03 已提交
56 57


58 59
class TestReshapeOpDimInfer2(TestReshapeOp):
    def init_data(self):
Z
zhupengyang 已提交
60 61 62
        self.ori_shape = (10, 2, 6)
        self.new_shape = (10, 0, 3, -1)
        self.infered_shape = (10, 2, 3, -1)
C
caoying03 已提交
63

C
caoying03 已提交
64

65
# situation 2: have shape(list, no tensor), have actual shape(Tensor)
66 67
class TestReshapeOpWithInputShape(OpTest):
    def setUp(self):
68
        self.init_data()
69
        self.op_type = "reshape2"
70

71
        self.inputs = {
72
            "X": np.random.random(self.ori_shape).astype("float32"),
73
            "Shape": np.array(
74
                self.actual_shape, dtype="int32")
75
        }
76
        self.attrs = {"shape": self.new_shape}
77
        self.outputs = {
78 79
            "Out": self.inputs["X"].reshape(self.actual_shape),
            'XShape': np.random.random(self.ori_shape).astype("float32")
80
        }
81

82
    def init_data(self):
Z
zhupengyang 已提交
83 84 85
        self.ori_shape = (6, 20)
        self.new_shape = (0, -1, 20)
        self.actual_shape = (2, 3, 20)
86

87
    def test_check_output(self):
88
        self.check_output(no_check_set=['XShape'])
89

G
guosheng 已提交
90
    def test_check_grad(self):
C
chengduo 已提交
91
        self.check_grad(["X"], "Out")
92 93


94 95
# Situation 3: have shape(list, have tensor), no actual shape(Tensor)
class TestReshapeOp_attr_ShapeTensor(OpTest):
96 97 98 99 100 101 102 103 104 105 106 107 108
    def setUp(self):
        self.init_data()
        self.op_type = "reshape2"

        shape_tensor = []
        for index, ele in enumerate(self.new_shape):
            shape_tensor.append(("x" + str(index), np.ones(
                (1)).astype('int32') * ele))

        self.inputs = {
            "X": np.random.random(self.ori_shape).astype("float32"),
            'ShapeTensor': shape_tensor
        }
109 110 111 112 113 114 115
        self.attrs = {'shape': self.shape}
        self.outputs = {
            "Out": self.inputs["X"].reshape(self.infered_shape),
            'XShape': np.random.random(self.ori_shape).astype("float32")
        }

    def init_data(self):
Z
zhupengyang 已提交
116 117 118
        self.ori_shape = (4, 25)
        self.new_shape = (10, 10)
        self.infered_shape = (10, 10)
119 120 121 122 123 124 125 126 127 128 129
        self.shape = (-1, -1)

    def test_check_output(self):
        self.check_output(no_check_set=['XShape'])

    def test_check_grad(self):
        self.check_grad(["X"], "Out")


class TestReshapeOpDimInfer1_attr_ShapeTensor(TestReshapeOp_attr_ShapeTensor):
    def init_data(self):
Z
zhupengyang 已提交
130 131 132
        self.ori_shape = (5, 20)
        self.new_shape = (5, -1, 20)
        self.infered_shape = (5, -1, 20)
133 134 135 136 137
        self.shape = (5, -1, -1)


class TestReshapeOpDimInfer2_attr_ShapeTensor(TestReshapeOp_attr_ShapeTensor):
    def init_data(self):
Z
zhupengyang 已提交
138 139 140 141
        self.ori_shape = (10, 2, 6)
        self.new_shape = (10, 0, 3, -1)
        self.infered_shape = (10, 2, 3, -1)
        self.shape = (10, 0, 3, -1)
142 143 144 145 146 147 148 149 150 151 152 153 154


# Situation 4: have shape(Tensor), no actual shape(Tensor)
class TestReshapeOp_attr_OnlyShape(OpTest):
    def setUp(self):
        self.init_data()
        self.op_type = "reshape2"

        self.inputs = {
            "X": np.random.random(self.ori_shape).astype("float32"),
            "Shape": np.array(
                self.new_shape, dtype="int32")
        }
155 156 157 158 159 160 161
        self.attrs = {}
        self.outputs = {
            "Out": self.inputs["X"].reshape(self.infered_shape),
            'XShape': np.random.random(self.ori_shape).astype("float32")
        }

    def init_data(self):
Z
zhupengyang 已提交
162 163 164
        self.ori_shape = (4, 25)
        self.new_shape = (10, 10)
        self.infered_shape = (10, 10)
165 166 167 168 169 170 171 172

    def test_check_output(self):
        self.check_output(no_check_set=['XShape'])

    def test_check_grad(self):
        self.check_grad(["X"], "Out")


173
class TestReshapeOpDimInfer1_attr_OnlyShape(TestReshapeOp_attr_OnlyShape):
174
    def init_data(self):
Z
zhupengyang 已提交
175 176 177
        self.ori_shape = (5, 20)
        self.new_shape = (5, -1, 10)
        self.infered_shape = (5, -1, 10)
178
        self.shape = (5, -1, -1)
179 180


181
class TestReshapeOpDimInfer2_attr_OnlyShape(TestReshapeOp_attr_OnlyShape):
182
    def init_data(self):
Z
zhupengyang 已提交
183 184 185 186
        self.ori_shape = (10, 2, 6)
        self.new_shape = (10, 0, 3, -1)
        self.infered_shape = (10, 2, 3, -1)
        self.shape = (10, 0, 3, -1)
187 188


189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
# test int8 data type on CPU
class TestReshapeInt8Op(OpTest):
    def setUp(self):
        self.init_dtype()
        self.init_data()
        self.use_mkldnn = True
        self._cpu_only = True
        self.op_type = "reshape2"
        input = np.random.randint(0, 127, self.ori_shape).astype(self.dtype)
        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(input)}
        self.attrs = {
            'shape': self.new_shape,
            'use_mkldnn': self.use_mkldnn,
        }
        self.outputs = {
            "Out": self.inputs["X"].reshape(self.infered_shape),
            'XShape': np.random.random(self.ori_shape).astype(np.float32)
        }

    def init_dtype(self):
        self.dtype = np.int8

    def init_data(self):
Z
zhupengyang 已提交
212 213 214
        self.ori_shape = (10, 2, 6)
        self.new_shape = (10, 0, 3, -1)
        self.infered_shape = (10, 2, 3, -1)
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229

    def test_check_output(self):
        self.check_output_with_place(
            fluid.core.CPUPlace(), atol=1e-5, no_check_set=['XShape'])

    def test_check_grad(self):
        pass


# test unt8 data type on CPU
class TestReshapeUint8Op(TestReshapeInt8Op):
    def init_dtype(self):
        self.dtype = np.uint8


230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
class TestReshapeOpBool(TestReshapeOp):
    def setUp(self):
        self.init_data()
        self.op_type = "reshape2"
        self.inputs = {
            "X": np.random.choice(
                [True, False], size=self.ori_shape)
        }
        self.attrs = {"shape": self.new_shape}
        self.outputs = {
            "Out": self.inputs["X"].reshape(self.infered_shape),
            'XShape': np.random.random(self.ori_shape).astype("float32")
        }

    def test_check_grad(self):
        pass


248
# Test python API
249
class TestReshapeAPI(unittest.TestCase):
250
    def _set_paddle_api(self):
251
        self.fill_constant = paddle.fluid.layers.fill_constant
J
joejiong 已提交
252
        self.data = paddle.static.data
253
        self.to_tensor = paddle.to_tensor
254 255 256 257
        self._executed_api()

    def _executed_api(self):
        self.reshape = paddle.reshape
258 259 260

    def _set_fluid_api(self):
        self.fill_constant = fluid.layers.fill_constant
J
joejiong 已提交
261
        self.data = paddle.static.data
262 263 264
        self.reshape = fluid.layers.reshape

    def _test_api(self):
J
joejiong 已提交
265
        paddle.enable_static()
266 267
        input = np.random.random([2, 25]).astype("float32")
        shape = [2, 5, 5]
268 269 270 271
        main_prog = Program()
        with program_guard(main_prog, Program()):
            positive_five = self.fill_constant([1], "int32", 5)
            x = self.data(name="x", shape=[2, 25], dtype="float32")
272

273
            actual_shape = self.data(name="shape", shape=[3], dtype="int32")
274

275 276
            # situation 1: have shape( list, no tensor), no actual shape(Tensor)
            out_1 = self.reshape(x, shape)
277

278 279 280
            # situation 2: have shape(list, no tensor), have actual shape(Tensor)
            out_2 = fluid.layers.reshape(
                x, shape=shape, actual_shape=actual_shape)
281

282 283
            # Situation 3: have shape(list, have tensor), no actual shape(Tensor)
            out_3 = self.reshape(x, shape=[positive_five, 10])
284

285 286
            # Situation 4: have shape(Tensor), no actual shape(Tensor)
            out_4 = self.reshape(x, shape=actual_shape)
287

J
joejiong 已提交
288
        exe = paddle.static.Executor(place=paddle.CPUPlace())
289
        res_1, res_2, res_3, res_4 = exe.run(
290
            main_prog,
291 292 293 294 295 296 297 298
            feed={"x": input,
                  "shape": np.array([2, 5, 5]).astype("int32")},
            fetch_list=[out_1, out_2, out_3, out_4])

        assert np.array_equal(res_1, input.reshape(shape))
        assert np.array_equal(res_2, input.reshape(shape))
        assert np.array_equal(res_3, input.reshape([5, 10]))
        assert np.array_equal(res_4, input.reshape(shape))
299

300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
    def test_paddle_api(self):
        self._set_paddle_api()
        self._test_api()

    def test_fluid_api(self):
        self._set_fluid_api()
        self._test_api()

    def test_imperative(self):
        self._set_paddle_api()
        input = np.random.random([2, 25]).astype("float32")
        shape = [2, 5, 5]
        with fluid.dygraph.guard():
            x = self.to_tensor(input)
            positive_five = self.fill_constant([1], "int32", 5)

            out_1 = self.reshape(x, shape)

            out_2 = self.reshape(x, shape=[positive_five, 10])

            shape_tensor = self.to_tensor(np.array([2, 5, 5]).astype("int32"))
            out_3 = self.reshape(x, shape=shape_tensor)

        assert np.array_equal(out_1.numpy(), input.reshape(shape))
        assert np.array_equal(out_2.numpy(), input.reshape([5, 10]))
        assert np.array_equal(out_3.numpy(), input.reshape(shape))

327

328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
class TestStaticReshape_(TestReshapeAPI):
    def _executed_api(self):
        self.reshape = paddle.reshape_

    def test_imperative(self):
        self._set_paddle_api()
        input = np.random.random([2, 25]).astype("float32")
        shape = [2, 5, 5]
        with fluid.dygraph.guard():
            x = self.to_tensor(input)
            positive_five = self.fill_constant([1], "int32", 5)

            out_1 = self.reshape(x, shape)

            out_2 = self.reshape(x, shape=[positive_five, 10])

            shape_tensor = self.to_tensor(np.array([2, 5, 5]).astype("int32"))
            out_3 = self.reshape(x, shape=shape_tensor)

        assert np.array_equal(out_1.numpy(), input.reshape(shape))
        assert np.array_equal(out_2.numpy(), input.reshape(shape))
        assert np.array_equal(out_3.numpy(), input.reshape(shape))


352
# Test Input Error
353
class TestReshapeOpError(unittest.TestCase):
354
    def _set_paddle_api(self):
J
joejiong 已提交
355
        self.data = paddle.static.data
356 357 358 359 360 361 362
        self.reshape = paddle.reshape

    def _set_fluid_api(self):
        self.data = fluid.data
        self.reshape = fluid.layers.reshape

    def _test_errors(self):
363 364 365 366
        with program_guard(Program(), Program()):
            # The x type of reshape_op must be Variable.
            def test_x_type():
                x1 = fluid.create_lod_tensor(
J
joejiong 已提交
367
                    np.array([[-1]]), [[1]], paddle.CPUPlace())
368
                self.reshape(x1, shape=[1])
369 370 371

            self.assertRaises(TypeError, test_x_type)

372
            # The x dtype of reshape_op must be float16, float32, float64, int32 or int64.
373
            def test_x_dtype():
374
                x2 = self.data(name="x2", shape=[2, 25], dtype="int8")
375
                self.reshape(x2, shape=[2, 5, 5])
376 377 378

            self.assertRaises(TypeError, test_x_dtype)

379
            def test_x_dtype_float16():
380 381 382
                x_float16 = self.data(
                    name="x_float16", shape=[2, 25], dtype="float16")
                self.reshape(x_float16, shape=[2, 5, 5])
383 384 385

            test_x_dtype_float16()

386
            x3 = self.data(name="x3", shape=[2, 25], dtype="float32")
387 388 389

            # The argument shape's type of reshape_op must be list, tuple or Variable.
            def test_shape_type():
390
                self.reshape(x3, shape=1)
391 392 393 394 395

            self.assertRaises(TypeError, test_shape_type)

            # The argument actual_shape's type of reshape_op must be Variable or None.
            def test_actual_shape_type():
396
                self.reshape(x3, shape=[25, 2], actual_shape=1)
397 398 399 400 401

            self.assertRaises(TypeError, test_actual_shape_type)

            # The argument shape have more than one -1.
            def test_shape_1():
402
                self.reshape(x3, shape=[-1, -1, 5])
403 404 405 406 407

            self.assertRaises(AssertionError, test_shape_1)

            # The argument shape have element 0 whose index exceed the input dimension.
            def test_shape_2():
408
                self.reshape(x3, [2, 5, 5, 0])
409 410 411

            self.assertRaises(AssertionError, test_shape_2)

T
tianshuo78520a 已提交
412
            # The argument shape have more than one negative value.
413
            def test_shape_3():
414
                self.reshape(x3, [-1, -2, 5])
415 416 417

            self.assertRaises(AssertionError, test_shape_3)

418 419 420 421 422 423 424 425
    def test_paddle_api_error(self):
        self._set_paddle_api()
        self._test_errors()

    def test_fluid_api_error(self):
        self._set_fluid_api()
        self._test_errors()

426

427 428 429 430 431 432 433
class TestDygraphReshapeAPI(unittest.TestCase):
    def setUp(self):
        self.executed_api()

    def executed_api(self):
        self.reshape = paddle.reshape

J
joejiong 已提交
434 435 436 437
    def test_out(self):
        paddle.disable_static()
        input_1 = np.random.random([5, 1, 10]).astype("int32")
        input = paddle.to_tensor(input_1)
438
        output = self.reshape(x=input, shape=[5, 10])
J
joejiong 已提交
439 440 441 442 443 444 445 446
        out_np = output.numpy()
        expected_out = np.reshape(input_1, newshape=[5, 10])
        self.assertTrue(np.allclose(expected_out, out_np))

    def test_out_uint8(self):
        paddle.disable_static()
        input_1 = np.random.random([5, 1, 10]).astype("uint8")
        input = paddle.to_tensor(input_1)
447
        output = self.reshape(x=input, shape=[5, 10])
J
joejiong 已提交
448 449 450 451 452 453 454 455
        out_np = output.numpy()
        expected_out = np.reshape(input_1, newshape=[5, 10])
        self.assertTrue(np.allclose(expected_out, out_np))

    def test_out_float32(self):
        paddle.disable_static()
        input_1 = np.random.random([5, 1, 10]).astype("float32")
        input = paddle.to_tensor(input_1)
456
        output = self.reshape(x=input, shape=[5, 10])
J
joejiong 已提交
457 458 459 460 461
        out_np = output.numpy()
        expected_out = np.reshape(input_1, newshape=[5, 10])
        self.assertTrue(np.allclose(expected_out, out_np))


462 463 464 465 466
class TestDygraphReshapeInplaceAPI(TestDygraphReshapeAPI):
    def executed_api(self):
        self.reshape = paddle.reshape_


Y
ying 已提交
467
if __name__ == "__main__":
Y
Yibing Liu 已提交
468
    unittest.main()