Layer.cpp 12.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/utils/Util.h"

17
#include "paddle/math/SparseMatrix.h"
Y
Yu Yang 已提交
18
#include "paddle/utils/Error.h"
Y
Yu Yang 已提交
19
#include "paddle/utils/Logging.h"
Z
zhangjinchao01 已提交
20 21

#include "AddtoLayer.h"
Y
Yu Yang 已提交
22
#include "CRFLayer.h"
Z
zhangjinchao01 已提交
23 24 25
#include "CosSimLayer.h"
#include "CostLayer.h"
#include "DataLayer.h"
Y
Yu Yang 已提交
26
#include "ExpandConvLayer.h"
Z
zhangjinchao01 已提交
27 28 29 30 31 32 33 34 35 36
#include "FullyConnectedLayer.h"
#include "HierarchicalSigmoidLayer.h"
#include "MaxLayer.h"
#include "MixedLayer.h"
#include "NormLayer.h"
#include "PoolLayer.h"
#include "TensorLayer.h"
#include "TransLayer.h"
#include "ValidationLayer.h"

37
DEFINE_bool(log_error_clipping, false, "enable log error clipping or not");
Z
zhangjinchao01 已提交
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125

namespace paddle {

Layer::Layer(const LayerConfig& config, bool useGpu)
    : config_(config),
      useGpu_(useGpu),
      deviceId_(-1),
      needSequenceInfo_(true) {}

bool Layer::init(const LayerMap& layerMap, const ParameterMap& parameterMap) {
  if (useGpu_ && FLAGS_parallel_nn) {
    /* gpu environment is specified by device property */
    deviceId_ = config_.device();
    if (deviceId_ < 0) {
      useGpu_ = false;
    }
  }

  output_.deviceId = deviceId_;

  for (auto& inputConfig : config_.inputs()) {
    std::string inputName = inputConfig.input_layer_name();
    LayerPtr inputLayer;
    CHECK(mapGet(inputName, layerMap, &inputLayer))
        << "Cannot find input layer " << inputName << " for layer "
        << getName();
    this->addPrev(inputLayer);

    inputLayer->addOutputArgument(deviceId_);

    if (inputConfig.has_input_parameter_name()) {
      ParameterPtr parameter;
      CHECK(
          mapGet(inputConfig.input_parameter_name(), parameterMap, &parameter))
          << "Cannot find input parameter "
          << inputConfig.input_parameter_name() << " for layer " << getName();
      parameter->incShared();
      CHECK_EQ(parameter->getDeviceId(), getDeviceId());
      parameters_.push_back(parameter);
    } else {
      parameters_.push_back(nullptr);
    }

    if (inputConfig.has_input_layer_argument()) {
      inputArgument_.push_back(inputConfig.input_layer_argument());
    } else {
      inputArgument_.push_back("");
    }
  }

  if (config_.has_bias_parameter_name()) {
    CHECK(mapGet(config_.bias_parameter_name(), parameterMap, &biasParameter_))
        << "Cannot find bias parameter " << config_.bias_parameter_name()
        << " for layer " << getName();
    biasParameter_->incShared();
    CHECK_EQ(biasParameter_->getDeviceId(), getDeviceId());
  }

  /* specify the activation function according to the configuration */
  std::string action_type = config_.active_type();
  activation_.reset(ActivationFunction::create(action_type));
  CHECK(activation_);

  initNeedFlags();
  markInBackward_.assign(inputLayers_.size(), false);

  return true;
}

ClassRegistrar<Layer, LayerConfig> Layer::registrar_;

LayerPtr Layer::create(const LayerConfig& config) {
  std::string type = config.type();

  if (type == "multi-class-cross-entropy")
    return LayerPtr(new MultiClassCrossEntropy(config));
  else if (type == "rank-cost")
    return LayerPtr(new RankingCost(config));
  else if (type == "auc-validation")
    return LayerPtr(new AucValidation(config));
  else if (type == "pnpair-validation")
    return LayerPtr(new PnpairValidation(config));
  // NOTE: stop adding "if" statements here.
  // Instead, use REGISTER_LAYER to add more layer types

  return LayerPtr(registrar_.createByType(config.type(), config));
}

126 127 128 129 130
void Layer::resetSpecifyOutput(Argument& output,
                               size_t height,
                               size_t width,
                               bool isValueClean,
                               bool isGradClean) {
Z
zhangjinchao01 已提交
131 132
  SetDevice device(output.deviceId);

133 134
  Matrix::resizeOrCreate(
      output.value, height, width, /* trans */ false, useGpu(output.deviceId));
Z
zhangjinchao01 已提交
135 136 137 138 139
  if (isValueClean) {
    output.value->zeroMem();
  }

  if (passType_ != PASS_TEST && needGradient()) {
140 141
    Matrix::resizeOrCreate(
        output.grad, height, width, /* trans */ false, useGpu(output.deviceId));
Z
zhangjinchao01 已提交
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
    if (isGradClean) {
      output.grad->zeroMem();
    }
  }
}

void Layer::resizeOutput(size_t height, size_t width) {
  resetSpecifyOutput(output_, height, width, false, false);

  for (size_t i = 0; i != outputOtherDevice_.size(); i++) {
    resetSpecifyOutput(outputOtherDevice_[i], height, width, false, false);
  }
}

void Layer::reserveOutput(size_t height, size_t width) {
  resetSpecifyOutput(output_, height, width, false, true);

  for (size_t i = 0; i != outputOtherDevice_.size(); i++) {
    resetSpecifyOutput(outputOtherDevice_[i], height, width, false, true);
  }
}

void Layer::resetOutput(size_t height, size_t width) {
  resetSpecifyOutput(output_, height, width, true, true);

  for (size_t i = 0; i != outputOtherDevice_.size(); i++) {
    resetSpecifyOutput(outputOtherDevice_[i], height, width, true, true);
  }
}

void Layer::addOutputArgument(int deviceId) {
  if (deviceId == deviceId_) {
    output_.countIncrement();
    return;
  } else {
    for (size_t i = 0; i < outputOtherDevice_.size(); i++) {
      if (outputOtherDevice_[i].deviceId == deviceId) {
        outputOtherDevice_[i].countIncrement();
        return;
      }
    }
  }

  Argument argu;
  argu.deviceId = deviceId;
  outputOtherDevice_.push_back(argu);
  outputOtherDevice_.back().countIncrement();
}

void Layer::copyOutputToOtherDevice() {
  for (size_t i = 0; i != outputOtherDevice_.size(); i++) {
    SetDevice device(outputOtherDevice_[i].deviceId);
    outputOtherDevice_[i].value->copyFrom(*getOutputValue(),
                                          HPPL_STREAM_DEFAULT);
    outputOtherDevice_[i].sequenceStartPositions =
        output_.sequenceStartPositions;
    outputOtherDevice_[i].subSequenceStartPositions =
        output_.subSequenceStartPositions;
    outputOtherDevice_[i].cpuSequenceDims = output_.cpuSequenceDims;

    outputOtherDevice_[i].notifyValueReady();
  }
}

void Layer::waitInputValue() {
  for (size_t i = 0; i != inputLayers_.size(); i++) {
    if (inputLayers_[i]->getDeviceId() != deviceId_) {
      getInput(i).waitValueReady();
    }
  }
}

void Layer::waitAndMergeOutputGrad() {
  if (!output_.grad || !outputOtherDevice_.size()) {
    return;
  }

  for (size_t i = 0; i != outputOtherDevice_.size(); i++) {
    outputOtherDevice_[i].waitGradReady();
  }

  /* merge output grad */
  size_t i = 0;
  if (!output_.getAllCount()) {
    output_.grad->copyFrom(*outputOtherDevice_[0].grad, HPPL_STREAM_1);
    hl_stream_synchronize(HPPL_STREAM_1);

    i++;
    if (outputOtherDevice_.size() == 1) return;
  }

233 234 235 236
  Matrix::resizeOrCreate(tmpGrad_,
                         output_.grad->getHeight(),
                         output_.grad->getWidth(),
                         /* trans */ false,
Z
zhangjinchao01 已提交
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
                         useGpu(output_.deviceId));

  for (; i != outputOtherDevice_.size(); i++) {
    tmpGrad_->copyFrom(*outputOtherDevice_[i].grad, HPPL_STREAM_1);
    hl_stream_synchronize(HPPL_STREAM_1);
    output_.grad->add(*tmpGrad_);
  }
}

void Layer::markAllInputGrad() {
  for (size_t i = 0; i != inputLayers_.size(); ++i) {
    if (!markInBackward_[i]) {
      inputLayers_[i]->getOutput(deviceId_).notifyGradReady();
    }
    markInBackward_[i] = false;
  }
}

void Layer::markInputGrad(int inputIndex) {
  inputLayers_[inputIndex]->getOutput(deviceId_).notifyGradReady();
  markInBackward_[inputIndex] = true;
}

void Layer::zeroGrad() {
  CHECK(output_.grad.get() != NULL);
  output_.grad->zeroMem();
}

void Layer::initNeedFlags() {
266 267
  auto initFlag = [this](
      bool& flag, bool (Layer::*flagQueryFunc)() const, ParameterType type) {
Z
zhangjinchao01 已提交
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
    flag = false;
    if (biasParameter_ && biasParameter_->hasType(type)) {
      flag = true;
    }
    if (!flag) {
      for (auto& para : parameters_) {
        if (para && para->hasType(type)) {
          flag = true;
          break;
        }
      }
    }
    if (!flag) {
      for (auto& layer : inputLayers_) {
        if ((layer.get()->*flagQueryFunc)()) {
          flag = true;
        }
      }
    }
  };
  initFlag(needGradient_, &Layer::needGradient, PARAMETER_GRADIENT);
}

void Layer::showOutputStats() {
  MatrixPtr out = getOutputValue();
  if (!out) return;
  if (!out->getElementCnt()) {
    LOG(INFO) << "The number of output of " << config_.name()
              << " is 0, skip to show the statistics";
    return;
  }
299 300
  MatrixPtr outSquare;
  if (dynamic_cast<GpuSparseMatrix*>(out.get())) {
301 302 303 304 305 306
    GpuSparseMatrix* tmp = dynamic_cast<GpuSparseMatrix*>(out.get());
    outSquare = std::make_shared<CpuSparseMatrix>(tmp->getHeight(),
                                                  tmp->getWidth(),
                                                  tmp->getElementCnt(),
                                                  tmp->getValueType(),
                                                  tmp->getFormat());
307 308 309 310 311 312 313 314 315
  } else {
    outSquare = out->clone();
  }
  outSquare->copyFrom(*out, HPPL_STREAM_DEFAULT);
  hl_stream_synchronize(HPPL_STREAM_DEFAULT);

  real mean = outSquare->getSum() / out->getElementCnt();
  real min;
  real max;
Z
zhangjinchao01 已提交
316 317
  if (dynamic_cast<CpuSparseMatrix*>(outSquare.get())) {
    auto tmpMat = dynamic_cast<CpuSparseMatrix*>(outSquare.get());
318 319
    min = tmpMat->getMin();
    max = tmpMat->getMax();
H
hedaoyuan 已提交
320
    tmpMat->square2();
Z
zhangjinchao01 已提交
321 322
    LOG(INFO) << "show statistics of [none zero values] in sparse matrix";
  } else {
323 324
    min = outSquare->getMin();
    max = outSquare->getMax();
H
hedaoyuan 已提交
325
    outSquare->square2();
Z
zhangjinchao01 已提交
326 327 328 329 330
  }
  real std = (outSquare->getSum() / outSquare->getElementCnt()) - mean * mean;
  std = std > 0 ? std : 0;
  LOG(INFO) << "The output state of " << config_.name() << ": mean=" << mean
            << ", "
331
            << "std=" << std << ", "
332 333
            << "min=" << min << ", "
            << "max=" << max;
Z
zhangjinchao01 已提交
334 335 336 337
}

void Layer::forwardActivation() {
  /* activation */
338
  auto status = activation_->forward(output_);
339
  status.check();
Z
zhangjinchao01 已提交
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357

  /* dropout */
  if (config_.drop_rate() > 0) {
    forwardDropOut();
    CHECK_NE(activation_->getName(), "softmax")
        << "Softmax activation cannot be used with Dropout";
  }

  if (FLAGS_show_layer_stat) {
    showOutputStats();
  }
}

void Layer::backwardActivation() {
  /* Do error clipping */
  if (config_.error_clipping_threshold() > 0.0f) {
    if (FLAGS_log_error_clipping) {
      CpuVector outGradVec(0, nullptr);
358 359
      outGradVec.subVecFrom(
          output_.grad->getData(), 0, output_.grad->getElementCnt());
Z
zhangjinchao01 已提交
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
      real maxAbsGrad = outGradVec.getAbsMax();
      if (maxAbsGrad > config_.error_clipping_threshold()) {
        real avgAbsGrad = outGradVec.getAbsSum() / outGradVec.getSize();
        LOG(INFO) << " layer=" << config_.name() << " need clipping,"
                  << " max error=" << maxAbsGrad << " avg error=" << avgAbsGrad;
      }
    }
    output_.grad->clip(-config_.error_clipping_threshold(),
                       config_.error_clipping_threshold());
  }

  /* Do dropout for delta*/
  if (config_.drop_rate() > 0 && passType_ != PASS_TEST) {
    MatrixPtr oGrad = getOutputGrad();
    oGrad->dotMul(*oGrad, *dropOutMask_);
  }

377
  auto status = activation_->backward(output_);
378
  status.check();
Z
zhangjinchao01 已提交
379 380 381 382 383 384 385 386
}

void Layer::forwardDropOut() {
  auto& outV = getOutputValue();

  if (passType_ == PASS_TRAIN || passType_ == PASS_METRIC_TRAIN ||
      passType_ == PASS_METRIC_TRAIN_WITH_NOERROR) {
    // new dropOutMask_ if dropOutMask_ is null ptr
387 388 389 390 391
    Matrix::resizeOrCreate(dropOutMask_,
                           outV->getHeight(),
                           outV->getWidth(),
                           false,
                           useGpu(deviceId_));
Z
zhangjinchao01 已提交
392 393 394 395 396 397
    dropOutMask_->randomizeUniform();  // generate a uniform random matrix
    dropOutMask_->biggerThanScalar(config_.drop_rate());  // random mask
    outV->dotMul(*outV, *dropOutMask_);                   // dropout
  } else if (passType_ == PASS_GC) {
    // only initialize once
    if (!dropOutMask_) {
398 399
      dropOutMask_ = Matrix::create(
          outV->getHeight(), outV->getWidth(), false, useGpu(deviceId_));
Z
zhangjinchao01 已提交
400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
      // We use cpu matrix to generate mask so that the mask
      // will be same for both gpu version and cpu version.
      // This will help unittest to make sure they have same result.
      MatrixPtr tmpMask = Matrix::create(outV->getHeight(), outV->getWidth());
      tmpMask->randomizeUniform();  // generate a uniform random matrix
      tmpMask->biggerThanScalar(config_.drop_rate());  // random mask
      dropOutMask_->copyFrom(*tmpMask);
    }
    outV->dotMul(*outV, *dropOutMask_);
  } else {  // passType == PASS_TEST
    outV->mulScalar(1.0 - config_.drop_rate());
  }
}

}  // namespace paddle