pooling.py 82.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# TODO: define pooling functions
16 17
from ...fluid.layers import utils, LayerHelper
from ...tensor.manipulation import unsqueeze, squeeze
18
from ...fluid.data_feeder import check_type, check_variable_and_dtype
W
wanghuancoder 已提交
19
from paddle import _C_ops
Z
zhiboniu 已提交
20
from paddle import in_dynamic_mode
F
From00 已提交
21 22
from paddle.fluid.framework import _in_legacy_dygraph
from paddle.fluid.framework import in_dygraph_mode
23

24 25
__all__ = []

26

27 28 29 30 31
def _is_list_or_tuple(input):
    return isinstance(input, (list, tuple))


def _check_input(x, dimension):
32
    if len(x.shape) != dimension:
33 34 35
        raise ValueError(
            "Excepted Input X is {}-D tensor, but received {}-D {}".format(
                dimension, len(x.shape), type(x)))
36 37


38
def _check_instance(x, x_name, types=(int, float)):
39 40

    if not isinstance(x, types):
41 42 43
        raise ValueError(
            "Excepted {} type for {} but received type: {}. ".format(
                types, x_name, type(x)))
44 45


D
Double_V 已提交
46
def _check_value_limitation(x, x_name, min_limit=1e-3):
47

D
Double_V 已提交
48 49 50
    def _check_value(x, x_name, min_limit=1e-3):
        if isinstance(x, int) and min_limit is not None and x < min_limit:
            raise ValueError(
51 52
                "Excepted the input {} to be greater than {} but received x: {}. "
                .format(x_name, min_limit, x))
D
Double_V 已提交
53 54 55 56 57

    for ele in x:
        _check_value(ele, x_name)


58 59 60
def _zero_padding_in_batch_and_channel(padding, channel_last):
    if channel_last:
        return list(padding[0]) == [0, 0] and list(padding[-1]) == [0, 0]
61
    else:
62
        return list(padding[0]) == [0, 0] and list(padding[1]) == [0, 0]
63 64


65 66 67 68
def _exclude_padding_in_batch_and_channel(padding, channel_last):
    padding_ = padding[1:-1] if channel_last else padding[2:]
    padding_ = [elem for pad_a_dim in padding_ for elem in pad_a_dim]
    return padding_
69 70


71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
def _channel_last(data_format, num_dims):
    if num_dims == 1:
        if data_format not in ['NCL', 'NLC']:
            raise ValueError(
                "Attr(data_format) should be 'NCL' or 'NLC'. Received "
                "Attr(data_format): %s" % str(data_format))
        else:
            return True if data_format == "NLC" else False
    if num_dims == 2:
        if data_format not in ['NCHW', 'NHWC']:
            raise ValueError(
                "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
                "Attr(data_format): %s" % str(data_format))
        else:
            return True if data_format == "NHWC" else False
    if num_dims == 3:
        if data_format not in ['NCDHW', 'NDHWC']:
            raise ValueError(
                "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
                "Attr(data_format): %s" % str(data_format))
        else:
            return True if data_format == "NDHWC" else False
93 94


95 96 97 98 99 100 101 102 103
def _update_padding_nd(padding, num_dims, channel_last=False, ceil_mode=False):
    if isinstance(padding, str):
        padding = padding.upper()
        if padding not in ["SAME", "VALID"]:
            raise ValueError(
                "Unknown padding: '{}'. It can only be 'SAME' or 'VALID'.".
                format(padding))
        if padding == "VALID":
            if ceil_mode != False:
104
                raise ValueError(
105 106 107 108 109 110 111 112 113 114 115 116 117 118
                    "When Attr(padding) is \"VALID\", Attr(ceil_mode) must be False. "
                    "Received ceil_mode: True.")

            padding_algorithm = "VALID"
            padding = [0] * num_dims
        else:
            padding_algorithm = "SAME"
            padding = [0] * num_dims
    elif _is_list_or_tuple(padding):
        # for padding like
        # [(pad_before, pad_after), (pad_before, pad_after), ...]
        # padding for batch_dim and channel_dim included
        if len(padding) == 2 + num_dims and _is_list_or_tuple(padding[0]):
            if not _zero_padding_in_batch_and_channel(padding, channel_last):
119
                raise ValueError(
120 121 122
                    "Non-zero padding({}) in the batch or channel dimensions "
                    "is not supported.".format(padding))
            padding_algorithm = "EXPLICIT"
123 124
            padding = _exclude_padding_in_batch_and_channel(
                padding, channel_last)
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
            if utils._is_symmetric_padding(padding, num_dims):
                padding = padding[0::2]
        # for padding like [pad_before, pad_after, pad_before, pad_after, ...]
        elif len(padding) == 2 * num_dims and isinstance(padding[0], int):
            padding_algorithm = "EXPLICIT"
            padding = utils.convert_to_list(padding, 2 * num_dims, 'padding')
            if utils._is_symmetric_padding(padding, num_dims):
                padding = padding[0::2]
        # for padding like [pad_d1, pad_d2, ...]
        elif len(padding) == num_dims and isinstance(padding[0], int):
            padding_algorithm = "EXPLICIT"
            padding = utils.convert_to_list(padding, num_dims, 'padding')
        else:
            raise ValueError("Invalid padding: {}".format(padding))
    # for integer padding
140
    else:
141 142 143 144
        padding_algorithm = "EXPLICIT"
        padding = utils.convert_to_list(padding, num_dims, 'padding')
    return padding, padding_algorithm

145

146 147 148 149 150 151 152 153
def _expand_low_nd_padding(padding):
    #1d to 2d fake input
    if len(padding) == 2:
        padding = [0] * 2 + padding
    elif len(padding) == 1:
        padding = [0] + padding
    else:
        raise ValueError(
154 155
            "The size of padding's dimmention should be 1 or 2. But got padding={}"
            .format(padding))
156 157 158 159 160 161 162
    return padding


def avg_pool1d(x,
               kernel_size,
               stride=None,
               padding=0,
163
               exclusive=True,
164 165
               ceil_mode=False,
               name=None):
D
Double_V 已提交
166
    """
167 168
    This API implements average pooling 1d operation,
    See more details in :ref:`api_nn_pooling_AvgPool1d` .
169 170 171 172

    Args:
        x (Tensor): The input tensor of pooling operator which is a 3-D tensor with
                          shape [N, C, L]. where `N` is batch size, `C` is the number of channels,
173
                          `L` is the length of the feature. The data type is float32 or float64.
174
        kernel_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
175
            it must contain an integer.
176
        stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
177 178 179 180 181 182 183 184
            it must contain an integer.
        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 1, which means the feature map is zero padded by the size of `padding[0]` on every sides.
            4. A list[int] or tuple(int) whose length is 2. It has the form [pad_before, pad_after].
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
185
        exclusive (bool): Whether to exclude padding points in average pooling
186
                          mode, default is `True`.
187
        ceil_mode (bool): ${ceil_mode_comment}Whether to use the ceil function to calculate output height and width.
188
            If it is set to False, the floor function will be used. The default value is False.
189 190 191 192 193 194 195 196 197
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
    Returns:
        Tensor: The output tensor of pooling result. The data type is same as input tensor.

    Raises:
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is "VALID", but `ceil_mode` is True.
198 199
        ValueError: If `padding` is a list or tuple but its length is greater than 1.
        ShapeError: If the input is not a 3-D tensor.
200 201 202 203
        ShapeError: If the output's shape calculated is not greater than 0.

    Examples:
        .. code-block:: python
C
Chen Long 已提交
204 205 206 207 208 209 210 211
          
            import paddle
            import paddle.nn.functional as F
            import numpy as np

            data = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32]).astype(np.float32))
            out = F.avg_pool1d(data, kernel_size=2, stride=2, padding=0)
            # out shape: [1, 3, 16]
212 213 214
    """
    """NCL to NCHW"""
    data_format = "NCHW"
Z
zhiboniu 已提交
215
    if not in_dynamic_mode():
216
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'avg_pool1d')
217
    _check_input(x, 3)
218
    x = unsqueeze(x, [2])
219
    kernel_size = utils.convert_to_list(kernel_size, 1, 'kernel_size')
220 221 222 223 224 225 226
    kernel_size = [1] + kernel_size
    if stride is None:
        stride = kernel_size
    else:
        stride = utils.convert_to_list(stride, 1, 'pool_stride')
        stride = [1] + stride

D
Double_V 已提交
227 228 229
    _check_value_limitation(kernel_size, "kernel_size", min_limit=1e-3)
    _check_value_limitation(stride, "stride", min_limit=1e-3)

230
    channel_last = _channel_last("NCL", 1)
231 232 233 234
    padding, padding_algorithm = _update_padding_nd(padding,
                                                    1,
                                                    channel_last=channel_last,
                                                    ceil_mode=ceil_mode)
235

236 237
    # use 2d to implenment 1d should expand padding in advance.
    padding = _expand_low_nd_padding(padding)
238

Z
zhiboniu 已提交
239
    if in_dynamic_mode():
240 241 242 243 244 245 246
        output = _C_ops.pool2d(x, 'pooling_type', 'avg', 'ksize', kernel_size,
                               'global_pooling', False, 'strides', stride,
                               'paddings', padding, 'padding_algorithm',
                               padding_algorithm, 'use_cudnn', True,
                               'ceil_mode', ceil_mode, 'use_mkldnn', False,
                               'exclusive', exclusive, 'data_format',
                               data_format)
247 248 249 250
        return squeeze(output, [2])

    op_type = 'pool2d'
    helper = LayerHelper(op_type, **locals())
251
    dtype = helper.input_dtype(input_param_name='x')
252 253
    pool_out = helper.create_variable_for_type_inference(dtype)

254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
    helper.append_op(type=op_type,
                     inputs={"X": x},
                     outputs={"Out": pool_out},
                     attrs={
                         "pooling_type": 'avg',
                         "ksize": kernel_size,
                         "global_pooling": False,
                         "strides": stride,
                         "paddings": padding,
                         "padding_algorithm": padding_algorithm,
                         "use_cudnn": True,
                         "ceil_mode": ceil_mode,
                         "use_mkldnn": False,
                         "exclusive": exclusive,
                         "data_format": data_format,
                     })
270 271 272 273

    return squeeze(pool_out, [2])


274
def avg_pool2d(x,
275 276 277 278
               kernel_size,
               stride=None,
               padding=0,
               ceil_mode=False,
279
               exclusive=True,
280 281
               divisor_override=None,
               data_format="NCHW",
282 283
               name=None):
    """
284 285
    This API implements average pooling 2d operation.
    See more details in :ref:`api_nn_pooling_AvgPool2d` .
D
Double_V 已提交
286

287
    Args:
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
        x (Tensor): The input tensor of pooling operator which is a 4-D tensor with
                          shape [N, C, H, W]. The format of input tensor is `"NCHW"` or
                          `"NHWC"`, where `N` is batch size, `C` is the number of channels,
                          `H` is the height of the feature, and `W` is the width of the
                          feature. The data type if float32 or float64.
        kernel_size (int|list|tuple): The pool kernel size. If it is a tuple or list,
            it must contain two integers, (kernel_size_Height, kernel_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
        stride (int|list|tuple): The stride size. If it is a tuple or list,
            it must contain two integers, (stride_Height, stride_Width).
            Otherwise, the stride size will be a square of an int.

        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 2, [pad_height, pad_weight] whose value means the padding size of each dimension.
            4. A list[int] or tuple(int) whose length is 4. [pad_height_top, pad_height_bottom, pad_width_left, pad_width_right] whose value means the padding size of each side.
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
        ceil_mode (bool): when True, will use `ceil` instead of `floor` to compute the output shape
308
        exclusive (bool): Whether to exclude padding points in average pooling
309 310 311 312 313
                          mode, default is `true`.
        divisor_override (float): if specified, it will be used as divisor, otherwise kernel_size will be used. Default None.
        data_format (string): The data format of the input and output data. An optional string from: `"NCHW"`, `"NHWC"`.
                        The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
                        `[batch_size, input_channels, input_height, input_width]`.
314 315 316
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
C
Chen Long 已提交
317
    
318 319
    Returns:
        Tensor: The output tensor of pooling result. The data type is same as input tensor.
C
Chen Long 已提交
320
    
321 322 323 324
    Raises:
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is "VALID", but `ceil_mode` is True.
        ShapeError: If the output's shape calculated is not greater than 0.
C
Chen Long 已提交
325
    
326 327
    Examples:
        .. code-block:: python
C
Chen Long 已提交
328 329 330 331 332 333 334 335 336 337 338
          
            import paddle
            import paddle.nn.functional as F
            import numpy as np
            
            # avg pool2d
            x = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32, 32]).astype(np.float32))
            out = F.avg_pool2d(x,
                            kernel_size=2,
                            stride=2, padding=0)
            # out.shape [1, 3, 16, 16]
339
    """
340
    kernel_size = utils.convert_to_list(kernel_size, 2, 'pool_size')
341 342 343
    if stride is None:
        stride = kernel_size
    else:
344
        stride = utils.convert_to_list(stride, 2, 'pool_stride')
345

D
Double_V 已提交
346 347 348
    _check_value_limitation(kernel_size, "kernel_size", min_limit=1e-3)
    _check_value_limitation(stride, "stride", min_limit=1e-3)

349
    channel_last = _channel_last(data_format, 2)
350 351 352 353
    padding, padding_algorithm = _update_padding_nd(padding,
                                                    2,
                                                    channel_last,
                                                    ceil_mode=ceil_mode)
354

F
From00 已提交
355 356
    if in_dygraph_mode() or _in_legacy_dygraph():
        if in_dygraph_mode():
357 358 359 360
            output = _C_ops.final_state_pool2d(x, kernel_size, stride, padding,
                                               ceil_mode, exclusive,
                                               data_format, 'avg', False, False,
                                               padding_algorithm)
F
From00 已提交
361
        else:
362 363 364 365 366 367 368
            output = _C_ops.pool2d(x, 'pooling_type', 'avg', 'ksize',
                                   kernel_size, 'global_pooling', False,
                                   'padding_algorithm', padding_algorithm,
                                   'strides', stride, 'paddings', padding,
                                   'use_cudnn', True, 'ceil_mode', ceil_mode,
                                   'use_mkldnn', False, 'exclusive', exclusive,
                                   'data_format', data_format)
369 370 371 372 373
        if divisor_override is None:
            return output
        else:
            _check_instance(divisor_override, "divisor_override")
            return output * (kernel_size[0] * kernel_size[1]) / divisor_override
374

375
    op_type = 'pool2d'
376
    helper = LayerHelper(op_type, **locals())
377
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'avg_pool2d')
378
    dtype = helper.input_dtype(input_param_name='x')
379 380
    pool_out = helper.create_variable_for_type_inference(dtype)

381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
    helper.append_op(type=op_type,
                     inputs={"X": x},
                     outputs={"Out": pool_out},
                     attrs={
                         "pooling_type": "avg",
                         "ksize": kernel_size,
                         "global_pooling": False,
                         "strides": stride,
                         "paddings": padding,
                         "padding_algorithm": padding_algorithm,
                         "use_cudnn": True,
                         "ceil_mode": ceil_mode,
                         "use_mkldnn": False,
                         "exclusive": exclusive,
                         "data_format": data_format,
                     })
397

398 399 400 401 402
    if divisor_override is None:
        return pool_out
    else:
        _check_instance(divisor_override, "divisor_override")
        return pool_out * (kernel_size[0] * kernel_size[1]) / divisor_override
403 404


405 406 407 408 409
def avg_pool3d(x,
               kernel_size,
               stride=None,
               padding=0,
               ceil_mode=False,
410
               exclusive=True,
411 412 413
               divisor_override=None,
               data_format="NCDHW",
               name=None):
414
    """
415 416
    This API implements average pooling 3d operation.
    See more details in :ref:`api_nn_pooling_AvgPool3d` .
417 418

    Args:
419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
        x (Tensor): The input tensor of pooling operator, which is a 5-D tensor with
                          shape [N, C, D, H, W], where `N` represents the batch size, `C` represents
                          the number of channels, `D`, `H` and `W` represent the depth, height and width of the feature respectively.
        kernel_size (int|list|tuple): The pool kernel size. If pool kernel size
            is a tuple or list, it must contain three integers,
            (kernel_size_Depth, kernel_size_Height, kernel_size_Width).
            Otherwise, the pool kernel size will be the cube of an int.
        stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain three integers, [stride_Depth, stride_Height, stride_Width).
            Otherwise, the pool stride size will be a cube of an int.
        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 3, [pad_depth, pad_height, pad_weight] whose value means the padding size of each dimension.
            4. A list[int] or tuple(int) whose length is 6. [pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right] whose value means the padding size of each side.
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
        ceil_mode (bool): ${ceil_mode_comment}
437
        exclusive (bool): Whether to exclude padding points in average pooling
438 439 440 441 442
                          mode, default is True.
        divisor_override (int|float) if specified, it will be used as divisor, otherwise kernel_size will be used. Default None.
        data_format (string): The data format of the input and output data. An optional string from: `"NCDHW"`, `"NDHWC"`.
                        The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
                        `[batch_size, input_channels, input_depth, input_height, input_width]`.
443
        name(str, optional): For detailed information, please refer
444 445
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
C
Chen Long 已提交
446
    
447
    Returns:
448
        Tensor: The output tensor of pooling result. The data type is same as input tensor.
C
Chen Long 已提交
449
    
450
    Raises:
451 452 453
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is "VALID", but `ceil_mode` is True.
        ShapeError: If the output's shape calculated is not greater than 0.
C
Chen Long 已提交
454
    
455 456
    Examples:
        .. code-block:: python
C
Chen Long 已提交
457
          
458
          import paddle
C
Chen Long 已提交
459 460
          import numpy as np

461 462 463 464 465 466 467 468
          x = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32, 32, 32]).astype(np.float32))
          # avg pool3d
          out = paddle.nn.functional.avg_pool3d(
                                            x,
                                            kernel_size = 2,
                                            stride = 2,
                                            padding=0)
          # out.shape: [1, 3, 16, 16, 16]
469
    """
470 471 472 473 474
    kernel_size = utils.convert_to_list(kernel_size, 3, 'pool_size')
    if stride is None:
        stride = kernel_size
    else:
        stride = utils.convert_to_list(stride, 3, 'pool_stride')
475

476
    channel_last = _channel_last(data_format, 3)
477 478 479 480
    padding, padding_algorithm = _update_padding_nd(padding,
                                                    3,
                                                    channel_last=channel_last,
                                                    ceil_mode=ceil_mode)
481

D
Double_V 已提交
482 483 484
    _check_value_limitation(kernel_size, "kernel_size", min_limit=1e-3)
    _check_value_limitation(stride, "stride", min_limit=1e-3)

F
From00 已提交
485 486
    if in_dygraph_mode() or _in_legacy_dygraph():
        if in_dygraph_mode():
487 488 489 490
            output = _C_ops.final_state_pool3d(x, kernel_size, stride, padding,
                                               ceil_mode, exclusive,
                                               data_format, 'avg', False, False,
                                               padding_algorithm)
F
From00 已提交
491
        if _in_legacy_dygraph():
492 493 494 495 496 497 498
            output = _C_ops.pool3d(x, 'pooling_type', 'avg', 'ksize',
                                   kernel_size, 'strides', stride, 'paddings',
                                   padding, 'global_pooling', False,
                                   'padding_algorithm', padding_algorithm,
                                   'use_cudnn', True, 'ceil_mode', ceil_mode,
                                   'use_mkldnn', False, 'exclusive', exclusive,
                                   'data_format', data_format)
499 500 501 502 503 504
        if divisor_override is None:
            return output
        else:
            _check_instance(divisor_override, "divisor_override")
            return output * (kernel_size[0] * kernel_size[1] *
                             kernel_size[2]) / divisor_override
505

506 507
    op_type = "pool3d"
    helper = LayerHelper(op_type, **locals())
508
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'max_pool3d')
509
    dtype = helper.input_dtype(input_param_name='x')
510 511
    pool_out = helper.create_variable_for_type_inference(dtype)
    outputs = {"Out": pool_out}
512

513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
    helper.append_op(type=op_type,
                     inputs={"X": x},
                     outputs=outputs,
                     attrs={
                         "pooling_type": 'avg',
                         "ksize": kernel_size,
                         "global_pooling": False,
                         "strides": stride,
                         "paddings": padding,
                         "padding_algorithm": padding_algorithm,
                         "use_cudnn": True,
                         "ceil_mode": ceil_mode,
                         "use_mkldnn": False,
                         "exclusive": exclusive,
                         "data_format": data_format,
                     })
529

530 531 532 533 534 535
    if divisor_override is None:
        return pool_out
    else:
        _check_instance(divisor_override, "divisor_override")
        return pool_out * (kernel_size[0] * kernel_size[1] *
                           kernel_size[2]) / divisor_override
536 537


538
def max_pool1d(x,
539 540 541
               kernel_size,
               stride=None,
               padding=0,
542
               return_mask=False,
543 544 545
               ceil_mode=False,
               name=None):
    """
546 547
    This API implements max pooling 1d opereation.
    See more details in :ref:`api_nn_pooling_MaxPool1d` .
548 549

    Args:
550 551 552
        x (Tensor): The input tensor of pooling operator which is a 3-D tensor with
                          shape [N, C, L], where `N` is batch size, `C` is the number of channels,
                          `L` is the length of the feature. The data type if float32 or float64.
553
        kernel_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
554
            it must contain an integer.
555
        stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
556 557 558 559 560 561 562 563
            it must contain an integer.
        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An integer, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 1, which means the feature map is zero padded by the size of `padding[0]` on every sides.
            4. A list[int] or tuple(int) whose length is 2. It has the form [pad_before, pad_after].
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
564
        return_mask (bool): Whether return the max indices along with the outputs. default is `False`.
565 566
        ceil_mode (bool): Whether to use the ceil function to calculate output height and width. False is the default.
            If it is set to False, the floor function will be used. Default False.
567 568 569 570 571
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
    Returns:
        Tensor: The output tensor of pooling result. The data type is same as input tensor.
572

573 574 575
    Raises:
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is "VALID", but `ceil_mode` is True.
576
        ShapeError: If the input is not a 3-D tensor.
577
        ShapeError: If the output's shape calculated is not greater than 0.
578

579 580
    Examples:
        .. code-block:: python
581

582 583
          import paddle
          import paddle.nn.functional as F
C
Chen Long 已提交
584 585
          import numpy as np

586 587 588
          data = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32]).astype(np.float32))
          pool_out = F.max_pool1d(data, kernel_size=2, stride=2, padding=0)
          # pool_out shape: [1, 3, 16]
589
          pool_out, indices = F.max_pool1d(data, kernel_size=2, stride=2, padding=0, return_mask=True)
590
          # pool_out shape: [1, 3, 16],  indices shape: [1, 3, 16]
591
    """
592 593
    """NCL to NCHW"""
    data_format = "NCHW"
Z
zhiboniu 已提交
594
    if not in_dynamic_mode():
595
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'max_pool1d')
596 597 598
    _check_input(x, 3)
    x = unsqueeze(x, [2])
    kernel_size = [1] + utils.convert_to_list(kernel_size, 1, 'pool_size')
599 600 601
    if stride is None:
        stride = kernel_size
    else:
602
        stride = [1] + utils.convert_to_list(stride, 1, 'pool_stride')
603

604 605 606
    padding, padding_algorithm = _update_padding_nd(padding,
                                                    1,
                                                    ceil_mode=ceil_mode)
607

608 609
    # use 2d to implenment 1d should expand padding in advance.
    padding = _expand_low_nd_padding(padding)
610

F
From00 已提交
611 612 613 614 615
    if in_dygraph_mode():
        if return_mask:
            pool_out = _C_ops.final_state_max_pool2d_with_index(
                x, kernel_size, stride, padding, False, False)
            return (squeeze(pool_out[0], [2]),
616 617
                    squeeze(pool_out[1], [2])) if return_mask else squeeze(
                        pool_out[0], [2])
F
From00 已提交
618
        else:
619 620 621 622
            pool_out = _C_ops.final_state_pool2d(x, kernel_size, stride,
                                                 padding, ceil_mode, True,
                                                 data_format, 'max', False,
                                                 False, padding_algorithm)
F
From00 已提交
623 624 625
            return squeeze(pool_out, [2])

    if _in_legacy_dygraph():
626
        if return_mask:
W
wanghuancoder 已提交
627
            pool_out = _C_ops.max_pool2d_with_index(
D
Double_V 已提交
628 629 630 631 632
                x, 'ksize', kernel_size, 'global_pooling', False, 'strides',
                stride, 'paddings', padding, 'padding_algorithm',
                padding_algorithm, 'use_cudnn', True, 'ceil_mode', ceil_mode,
                'use_mkldnn', False, 'exclusive', True, 'data_format',
                data_format)
633
            return (squeeze(pool_out[0], [2]),
634 635
                    squeeze(pool_out[1], [2])) if return_mask else squeeze(
                        pool_out[0], [2])
D
Double_V 已提交
636
        else:
637 638 639 640 641 642 643
            pool_out = _C_ops.pool2d(x, 'pooling_type', 'max', 'ksize',
                                     kernel_size, 'global_pooling', False,
                                     'padding_algorithm', padding_algorithm,
                                     'strides', stride, 'paddings', padding,
                                     'use_cudnn', True, 'ceil_mode', ceil_mode,
                                     'use_mkldnn', False, 'exclusive', True,
                                     'data_format', data_format)
D
Double_V 已提交
644 645
            return squeeze(pool_out, [2])

646
    op_type = 'max_pool2d_with_index' if return_mask else "pool2d"
647
    helper = LayerHelper(op_type, **locals())
648
    dtype = helper.input_dtype(input_param_name='x')
649
    pool_out = helper.create_variable_for_type_inference(dtype)
650
    mask = helper.create_variable_for_type_inference('int32')
651 652
    outputs = {"Out": pool_out, "Mask": mask}

653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
    helper.append_op(type=op_type,
                     inputs={"X": x},
                     outputs=outputs,
                     attrs={
                         "pooling_type": 'max',
                         "ksize": kernel_size,
                         "global_pooling": False,
                         "strides": stride,
                         "paddings": padding,
                         "padding_algorithm": padding_algorithm,
                         "use_cudnn": True,
                         "ceil_mode": ceil_mode,
                         "use_mkldnn": False,
                         "exclusive": True,
                         "data_format": data_format,
                     })
669

670
    return (squeeze(pool_out, [2]),
671
            squeeze(mask, [2])) if return_mask else squeeze(pool_out, [2])
672 673


674 675 676 677
def _unpool_output_size(x, kernel_size, stride, padding, output_size):
    input_size = x.shape
    default_size = []
    for d in range(len(kernel_size)):
678 679
        default_size.append((input_size[-len(kernel_size) + d] - 1) *
                            stride[d] + kernel_size[d] - 2 * padding[d])
680 681 682 683 684 685 686 687 688
    if output_size is None:
        ret = default_size
    else:
        if len(output_size) == len(kernel_size) + 2:
            output_size = output_size[2:]
        if len(output_size) != len(kernel_size):
            raise ValueError(
                "output_size should be a sequence containing "
                "{} or {} elements, but it has a length of '{}'".format(
689 690
                    len(kernel_size),
                    len(kernel_size) + 2, len(output_size)))
691 692 693 694 695
        for d in range(len(kernel_size)):
            min_size = default_size[d] - stride[d]
            max_size = default_size[d] + stride[d]
            if not (min_size < output_size[d] < max_size):
                raise ValueError(
696 697
                    'invalid output_size "{}" (dim {} must be between {} and {})'
                    .format(output_size, d, min_size, max_size))
698 699 700 701 702

        ret = output_size
    return ret


703 704 705 706 707 708 709 710
def max_unpool1d(x,
                 indices,
                 kernel_size,
                 stride=None,
                 padding=0,
                 data_format="NCL",
                 output_size=None,
                 name=None):
711
    r"""
712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784
    This API implements max unpooling 1d opereation.
    `max_unpool1d` accepts the output of `max_pool1d` as input, 
    including the indices of the maximum value and calculate the partial inverse. 
    All non-maximum values ​​are set to zero.

    - Input: :math:`(N, C, L_{in})`
    - Output: :math:`(N, C, L_{out})`, where
    
    .. math::
        L_{out} = (L_{in} - 1) * stride - 2 * padding + kernel\_size

    or as given by :attr:`output_size` in the call operator.


    Args:
        x (Tensor): The input tensor of unpooling operator which is a 3-D tensor with
                          shape [N, C, L]. The format of input tensor is `"NCL"`, 
                          where `N` is batch size, `C` is the number of channels, `L` is
                          the length of the feature. The data type is float32 or float64.
        indices (Tensor): The indices given out by maxpooling1d which is a 3-D tensor with
                          shape [N, C, L]. The format of input tensor is `"NCL"` , 
                          where `N` is batch size, `C` is the number of channels, `L` is
                          the length of the featuree. The data type is float32 or float64.
        kernel_size (int|list|tuple): The unpool kernel size. If unpool kernel size is a tuple or list,
            it must contain an integer.
        stride (int|list|tuple): The unpool stride size. If unpool stride size is a tuple or list,
            it must contain an integer.
        padding (int | tuple): Padding that was added to the input.
        output_size(list|tuple, optional): The target output size. If output_size is not specified, 
                           the actual output shape will be automatically calculated by (input_shape,
                           kernel_size, stride, padding).
        data_format (string): The data format of the input and output data.
                        The default is `"NCL"`. When it is `"NCL"`, the data is stored in the order of:
                        `[batch_size, input_channels, input_length]`.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.

    Returns:
        Tensor: The output tensor of unpooling result. 

    Examples:
        .. code-block:: python
        
            import paddle
            import paddle.nn.functional as F

            data = paddle.rand(shape=[1, 3, 16])
            pool_out, indices = F.max_pool1d(data, kernel_size=2, stride=2, padding=0, return_mask=True)
            # pool_out shape: [1, 3, 8],  indices shape: [1, 3, 8]
            unpool_out = F.max_unpool1d(pool_out, indices, kernel_size=2, padding=0)
            # unpool_out shape: [1, 3, 16]

    """
    """NCL to NCHW"""
    if data_format not in ["NCL"]:
        raise ValueError("Attr(data_format) should be 'NCL'. Received "
                         "Attr(data_format): %s." % str(data_format))
    data_format = "NCHW"
    x = unsqueeze(x, [2])
    indices = unsqueeze(indices, [2])
    kernel_size = [1] + utils.convert_to_list(kernel_size, 1, 'pool_size')
    if stride is None:
        stride = kernel_size
    else:
        stride = [1] + utils.convert_to_list(stride, 1, 'pool_stride')
    padding, padding_algorithm = _update_padding_nd(padding, 1)
    # use 2d to implenment 1d should expand padding in advance.
    padding = _expand_low_nd_padding(padding)

    output_size = _unpool_output_size(x, kernel_size, stride, padding,
                                      output_size)

X
xiaoting 已提交
785 786 787 788 789
    if in_dygraph_mode():
        output = _C_ops.final_state_unpool(x, indices, kernel_size, stride,
                                           padding, output_size, data_format)
        return squeeze(output, [2])
    elif in_dynamic_mode():
790 791 792 793 794 795 796 797 798 799 800
        output = _C_ops.unpool(x, indices, 'unpooling_type', 'max', 'ksize',
                               kernel_size, 'strides', stride, 'paddings',
                               padding, "output_size", output_size,
                               "data_format", data_format)
        return squeeze(output, [2])

    op_type = "unpool"
    helper = LayerHelper(op_type, **locals())
    dtype = helper.input_dtype(input_param_name="x")
    unpool_out = helper.create_variable_for_type_inference(dtype)

801 802 803 804 805 806 807 808 809 810 811 812 813
    helper.append_op(type=op_type,
                     inputs={
                         "X": x,
                         "Indices": indices
                     },
                     outputs={"Out": unpool_out},
                     attrs={
                         "unpooling_type": "max",
                         "ksize": kernel_size,
                         "strides": stride,
                         "paddings": padding,
                         "output_size": output_size
                     })
814 815 816
    return squeeze(unpool_out, [2])


817 818 819 820 821 822 823 824
def max_unpool2d(x,
                 indices,
                 kernel_size,
                 stride=None,
                 padding=0,
                 data_format="NCHW",
                 output_size=None,
                 name=None):
825
    r"""
826
    This API implements max unpooling 2d opereation.
827
    See more details in :ref:`api_nn_pooling_MaxUnPool2D` .
828

829 830

    Args:
831 832 833
        x (Tensor): The input tensor of unpooling operator which is a 4-D tensor with
                          shape [N, C, H, W]. The format of input tensor is `"NCHW"`, 
                          where `N` is batch size, `C` is the number of channels,
834 835
                          `H` is the height of the feature, and `W` is the width of the
                          feature. The data type if float32 or float64.
836 837 838 839 840 841 842 843 844 845 846 847 848
        indices (Tensor): The indices given out by maxpooling2d which is a 4-D tensor with
                          shape [N, C, H, W]. The format of input tensor is `"NCHW"` , 
                          where `N` is batch size, `C` is the number of channels,
                          `H` is the height of the feature, and `W` is the width of the
                          feature. The data type if float32 or float64.
        kernel_size (int|list|tuple): The unpool kernel size. If unpool kernel size is a tuple or list,
            it must contain an integer.
        stride (int|list|tuple): The unpool stride size. If unpool stride size is a tuple or list,
            it must contain an integer.
        padding (int | tuple): Padding that was added to the input.
        output_size(list|tuple, optional): The target output size. If output_size is not specified, 
                           the actual output shape will be automatically calculated by (input_shape,
                           kernel_size, padding).
849 850 851
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
852

853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875

        - Input: :math:`(N, C, H_{in}, W_{in})`
        - Output: :math:`(N, C, H_{out}, W_{out})`, where

          .. math::
            H_{out} = (H_{in} - 1) \times \text{stride[0]} - 2 \times \text{padding[0]} + \text{kernel\_size[0]}

          .. math::
            W_{out} = (W_{in} - 1) \times \text{stride[1]} - 2 \times \text{padding[1]} + \text{kernel\_size[1]}

          or as given by :attr:`output_size` in the call operator

        Returns:
            Tensor: The output tensor of unpooling result. 

        Raises:
            ValueError: If the input is not a 4-D tensor.
            ValueError: If indeces shape is not equal input shape.
            

        Examples:
            .. code-block:: python
          
C
Chen Long 已提交
876 877
            import paddle
            import paddle.nn.functional as F
878

879
            data = paddle.rand(shape=[1,1,6,6])
880 881 882 883 884 885 886 887 888
            pool_out, indices = F.max_pool2d(data, kernel_size=2, stride=2, padding=0, return_mask=True)
            # pool_out shape: [1, 1, 3, 3],  indices shape: [1, 1, 3, 3]
            unpool_out = F.max_unpool2d(pool_out, indices, kernel_size=2, padding=0)
            # unpool_out shape: [1, 1, 6, 6]

            # specify a different output size than input size 
            unpool_out = F.max_unpool2d(pool_out, indices, kernel_size=2, padding=0, output_size=[7,7])
            # unpool_out shape: [1, 1, 7, 7] 

889 890
    """
    kernel_size = utils.convert_to_list(kernel_size, 2, 'pool_size')
891 892 893 894 895 896 897 898 899 900 901 902 903
    if stride is None:
        stride = kernel_size
    else:
        stride = utils.convert_to_list(stride, 2, 'pool_stride')
    padding = utils.convert_to_list(padding, 2, 'padding')

    if data_format not in ["NCHW"]:
        raise ValueError("Attr(data_format) should be 'NCHW'. Received "
                         "Attr(data_format): %s." % str(data_format))

    output_size = _unpool_output_size(x, kernel_size, stride, padding,
                                      output_size)

X
xiaoting 已提交
904 905 906 907 908
    if in_dygraph_mode():
        output = _C_ops.final_state_unpool(x, indices, kernel_size, stride,
                                           padding, output_size, data_format)

    elif in_dynamic_mode():
909 910 911 912 913 914 915 916 917 918 919
        output = _C_ops.unpool(x, indices, 'unpooling_type', 'max', 'ksize',
                               kernel_size, 'strides', stride, 'paddings',
                               padding, "output_size", output_size,
                               "data_format", data_format)
        return output

    op_type = "unpool"
    helper = LayerHelper(op_type, **locals())
    dtype = helper.input_dtype(input_param_name="x")
    unpool_out = helper.create_variable_for_type_inference(dtype)

920 921 922 923 924 925 926 927 928 929 930 931 932
    helper.append_op(type=op_type,
                     inputs={
                         "X": x,
                         "Indices": indices
                     },
                     outputs={"Out": unpool_out},
                     attrs={
                         "unpooling_type": "max",
                         "ksize": kernel_size,
                         "strides": stride,
                         "paddings": padding,
                         "output_size": output_size
                     })
933 934 935
    return unpool_out


936 937 938 939 940 941 942 943
def max_unpool3d(x,
                 indices,
                 kernel_size,
                 stride=None,
                 padding=0,
                 data_format="NCDHW",
                 output_size=None,
                 name=None):
944
    r"""
945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
    This API implements max unpooling 3d opereation.
    `max_unpool3d` accepts the output of `max_pool3d` as input, 
    including the indices of the maximum value and calculate the partial inverse. 
    All non-maximum values ​​are set to zero.

    - Input: :math:`(N, C, D_{in}, H_{in}, W_{in})`
    - Output: :math:`(N, C, D_{out}, H_{out}, W_{out})`, where
    
    .. math::
        D_{out} = (D_{in} - 1) * stride[0] - 2 * padding[0] + kernel\_size[0]

    .. math::
        H_{out} = (H_{in} - 1) * stride[1] - 2 * padding[1] + kernel\_size[1]

    .. math::
        W_{out} = (W_{in} - 1) * stride[2] - 2 * padding[2] + kernel\_size[2]

    or as given by :attr:`output_size` in the call operator


    Args:
        x (Tensor): The input tensor of unpooling operator which is a 5-D tensor with
                          shape [N, C, D, H, W]. The format of input tensor is `"NCDHW"`, 
                          where `N` is batch size, `C` is the number of channels, `D` is
                          the depth of the feature, `H` is the height of the feature, 
                          and `W` is the width of the feature. The data type is float32 or float64.
        indices (Tensor): The indices given out by maxpooling3d which is a 5-D tensor with
                          shape [N, C, D, H, W]. The format of input tensor is `"NCDHW"` , 
                          where `N` is batch size, `C` is the number of channels, `D` is
                          the depth of the feature, `H` is the height of the feature, 
                          and `W` is the width of the feature. The data type is float32 or float64.
        kernel_size (int|list|tuple): The unpool kernel size. If unpool kernel size is a tuple or list,
            it must contain an integer.
        stride (int|list|tuple): The unpool stride size. If unpool stride size is a tuple or list,
            it must contain an integer.
        padding (int | tuple): Padding that was added to the input.
        output_size(list|tuple, optional): The target output size. If output_size is not specified, 
                           the actual output shape will be automatically calculated by (input_shape,
                           kernel_size, stride, padding).
        data_format (string): The data format of the input and output data.
                        The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
                        `[batch_size, input_channels, input_depth, input_height, input_width]`.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.

    Returns:
        Tensor: The output tensor of unpooling result. 

    Examples:
        .. code-block:: python
        
            import paddle
            import paddle.nn.functional as F

            data = paddle.rand(shape=[1, 1, 4, 4, 6])
            pool_out, indices = F.max_pool3d(data, kernel_size=2, stride=2, padding=0, return_mask=True)
            # pool_out shape: [1, 1, 2, 2, 3],  indices shape: [1, 1, 2, 2, 3]
            unpool_out = F.max_unpool3d(pool_out, indices, kernel_size=2, padding=0)
            # unpool_out shape: [1, 1, 4, 4, 6]

    """
    kernel_size = utils.convert_to_list(kernel_size, 3, 'pool_size')
    if stride is None:
        stride = kernel_size
    else:
        stride = utils.convert_to_list(stride, 3, 'pool_stride')
    padding = utils.convert_to_list(padding, 3, 'padding')

    if data_format not in ["NCDHW"]:
        raise ValueError("Attr(data_format) should be 'NCDHW'. Received "
                         "Attr(data_format): %s." % str(data_format))

    output_size = _unpool_output_size(x, kernel_size, stride, padding,
                                      output_size)

X
xiaoting 已提交
1021 1022 1023 1024
    if in_dygraph_mode():
        output = _C_ops.final_state_unpool3d(x, indices, kernel_size, stride,
                                             padding, output_size, data_format)
    elif in_dynamic_mode():
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
        output = _C_ops.unpool3d(x, indices, 'unpooling_type', 'max', 'ksize',
                                 kernel_size, 'strides', stride, 'paddings',
                                 padding, "output_size", output_size,
                                 "data_format", data_format)
        return output

    op_type = "unpool3d"
    helper = LayerHelper(op_type, **locals())
    dtype = helper.input_dtype(input_param_name="x")
    unpool_out = helper.create_variable_for_type_inference(dtype)

1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
    helper.append_op(type=op_type,
                     inputs={
                         "X": x,
                         "Indices": indices
                     },
                     outputs={"Out": unpool_out},
                     attrs={
                         "unpooling_type": "max",
                         "ksize": kernel_size,
                         "strides": stride,
                         "paddings": padding,
                         "output_size": output_size
                     })
1049 1050 1051
    return unpool_out


1052 1053 1054 1055 1056 1057 1058 1059 1060
def max_pool2d(x,
               kernel_size,
               stride=None,
               padding=0,
               return_mask=False,
               ceil_mode=False,
               data_format="NCHW",
               name=None):
    kernel_size = utils.convert_to_list(kernel_size, 2, 'pool_size')
1061 1062 1063 1064 1065 1066 1067 1068 1069
    if stride is None:
        stride = kernel_size
    else:
        stride = utils.convert_to_list(stride, 2, 'pool_stride')

    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
            "Attr(data_format): %s." % str(data_format))
1070 1071 1072

    channel_last = True if data_format == "NHWC" else False

1073 1074 1075 1076
    padding, padding_algorithm = _update_padding_nd(padding,
                                                    num_dims=2,
                                                    channel_last=channel_last,
                                                    ceil_mode=ceil_mode)
1077

1078
    if data_format == "NHWC" and return_mask:
D
Double_V 已提交
1079
        raise ValueError(
1080
            "When setting return_mask to true, data_format must be set to NCHW in API:max_pool2d"
D
Double_V 已提交
1081 1082
        )

F
From00 已提交
1083 1084 1085 1086 1087 1088
    if in_dygraph_mode():
        if return_mask:
            output = _C_ops.final_state_max_pool2d_with_index(
                x, kernel_size, stride, padding, False, False)
            return output if return_mask else output[0]
        else:
1089 1090 1091 1092
            return _C_ops.final_state_pool2d(x, kernel_size, stride, padding,
                                             ceil_mode, True, data_format,
                                             'max', False, False,
                                             padding_algorithm)
F
From00 已提交
1093 1094

    if _in_legacy_dygraph():
1095
        if return_mask:
W
wanghuancoder 已提交
1096
            output = _C_ops.max_pool2d_with_index(
D
Double_V 已提交
1097 1098 1099 1100 1101
                x, 'ksize', kernel_size, 'global_pooling', False, 'strides',
                stride, 'paddings', padding, 'padding_algorithm',
                padding_algorithm, 'use_cudnn', True, 'ceil_mode', ceil_mode,
                'use_mkldnn', False, 'exclusive', True, 'data_format',
                data_format)
1102
            return output if return_mask else output[0]
D
Double_V 已提交
1103
        else:
1104 1105 1106 1107 1108 1109 1110
            output = _C_ops.pool2d(x, 'pooling_type', 'max', 'ksize',
                                   kernel_size, 'global_pooling', False,
                                   'padding_algorithm', padding_algorithm,
                                   'strides', stride, 'paddings', padding,
                                   'use_cudnn', True, 'ceil_mode', ceil_mode,
                                   'use_mkldnn', False, 'exclusive', True,
                                   'data_format', data_format)
D
Double_V 已提交
1111
            return output
1112

1113
    op_type = 'max_pool2d_with_index' if return_mask else "pool2d"
1114
    helper = LayerHelper(op_type, **locals())
1115 1116
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'max_pool2d')
1117
    dtype = helper.input_dtype(input_param_name='x')
1118
    pool_out = helper.create_variable_for_type_inference(dtype)
1119
    mask = helper.create_variable_for_type_inference("int32")
1120
    outputs = {"Out": pool_out, "Mask": mask}
1121

1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
    helper.append_op(type=op_type,
                     inputs={"X": x},
                     outputs=outputs,
                     attrs={
                         "pooling_type": 'max',
                         "ksize": kernel_size,
                         "global_pooling": False,
                         "strides": stride,
                         "paddings": padding,
                         "padding_algorithm": padding_algorithm,
                         "use_cudnn": True,
                         "ceil_mode": ceil_mode,
                         "use_mkldnn": False,
                         "exclusive": True,
                         "data_format": data_format,
                     })
1138

1139
    return (pool_out, mask) if return_mask else pool_out
1140 1141 1142 1143 1144 1145


def max_pool3d(x,
               kernel_size,
               stride=None,
               padding=0,
1146
               return_mask=False,
1147 1148 1149 1150
               ceil_mode=False,
               data_format="NCDHW",
               name=None):
    """
1151 1152
    This API implements max pooling 2d operation.
    See more details in :ref:`api_nn_pooling_MaxPool3d` .
1153 1154
    Args:
        x (Tensor): The input tensor of pooling operator, which is a 5-D tensor with
D
Double_V 已提交
1155
                          shape [N, C, D, H, W]. The format of input tensor is `"NCDHW"` or `"NDHWC"`, where N represents batch size, C represents the number of channels, D, H and W represent the depth, height and width of the feature respectively.
1156
        kernel_size (int|list|tuple): The pool kernel size. If the kernel size
1157
            is a tuple or list, it must contain three integers,
1158
            (kernel_size_Depth, kernel_size_Height, kernel_size_Width).
1159
            Otherwise, the pool kernel size will be the cube of an int.
1160 1161
        stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain three integers, [stride_Depth, stride_Height, stride_Width).
1162
            Otherwise, the pool stride size will be a cube of an int.
1163 1164 1165 1166 1167 1168 1169
        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 3, [pad_depth, pad_height, pad_weight] whose value means the padding size of each dimension.
            4. A list[int] or tuple(int) whose length is 6. [pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right] whose value means the padding size of each side.
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
1170
        ceil_mode (bool): ${ceil_mode_comment}
1171
        return_mask (bool): Whether to return the max indices along with the outputs. Default False. Only support "NDCHW" data_format.
1172 1173 1174 1175 1176 1177
        data_format (string): The data format of the input and output data. An optional string from: `"NCDHW"`, `"NDHWC"`.
                        The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
                        `[batch_size, input_channels, input_depth, input_height, input_width]`.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
C
Chen Long 已提交
1178
    
1179 1180
    Returns:
        Tensor: The output tensor of pooling result. The data type is same as input tensor.
C
Chen Long 已提交
1181
    
1182 1183 1184 1185
    Raises:
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is "VALID", but `ceil_mode` is True.
        ShapeError: If the output's shape calculated is not greater than 0.
C
Chen Long 已提交
1186
    
1187 1188
    Examples:
        .. code-block:: python
1189

C
Chen Long 已提交
1190 1191
            import paddle
            import paddle.nn.functional as F
1192

C
Chen Long 已提交
1193
            # max pool3d
1194 1195
            x = paddle.uniform([1, 3, 32, 32, 32])
            output = F.max_pool3d(x,
C
Chen Long 已提交
1196 1197
                                  kernel_size=2,
                                  stride=2, padding=0)
1198
            # output.shape [1, 3, 16, 16, 16]
C
Chen Long 已提交
1199
            # for return_mask=True
1200
            x = paddle.uniform([1, 3, 32, 32, 32])
C
Chen Long 已提交
1201 1202 1203 1204 1205
            output, max_indices = paddle.nn.functional.max_pool3d(x,
                                          kernel_size = 2,
                                          stride = 2,
                                          padding=0,
                                          return_mask=True)
1206
            # output.shape [1, 3, 16, 16, 16], max_indices.shape [1, 3, 16, 16, 16]
1207 1208 1209 1210 1211 1212 1213
    """
    kernel_size = utils.convert_to_list(kernel_size, 3, 'pool_size')
    if stride is None:
        stride = kernel_size
    else:
        stride = utils.convert_to_list(stride, 3, 'pool_stride')

1214
    channel_last = _channel_last(data_format, 3)
1215

1216 1217 1218 1219
    padding, padding_algorithm = _update_padding_nd(padding,
                                                    3,
                                                    channel_last=channel_last,
                                                    ceil_mode=ceil_mode)
1220

1221
    if data_format == "NDHWC" and return_mask:
D
Double_V 已提交
1222
        raise ValueError(
1223
            "When setting return_mask to true, data_format must be set to NCDHW in API:max_pool3d"
D
Double_V 已提交
1224 1225
        )

F
From00 已提交
1226 1227 1228 1229 1230 1231
    if in_dygraph_mode():
        if return_mask:
            output = _C_ops.final_state_max_pool3d_with_index(
                x, kernel_size, stride, padding, False, False)
            return output if return_mask else output[0]
        else:
1232 1233 1234 1235
            return _C_ops.final_state_pool3d(x, kernel_size, stride, padding,
                                             ceil_mode, True, data_format,
                                             'max', False, False,
                                             padding_algorithm)
F
From00 已提交
1236 1237

    if _in_legacy_dygraph():
1238
        if return_mask:
W
wanghuancoder 已提交
1239
            output = _C_ops.max_pool3d_with_index(
D
Double_V 已提交
1240 1241 1242 1243 1244
                x, 'pooling_type', 'max', 'ksize', kernel_size, 'strides',
                stride, 'paddings', padding, 'global_pooling', False,
                'padding_algorithm', padding_algorithm, 'use_cudnn', True,
                'ceil_mode', ceil_mode, 'use_mkldnn', False, 'exclusive', True,
                'data_format', data_format)
1245
            return output if return_mask else output[0]
D
Double_V 已提交
1246
        else:
1247 1248 1249 1250 1251 1252 1253
            output = _C_ops.pool3d(x, 'pooling_type', 'max', 'ksize',
                                   kernel_size, 'global_pooling', False,
                                   'padding_algorithm', padding_algorithm,
                                   'strides', stride, 'paddings', padding,
                                   'use_cudnn', True, 'ceil_mode', ceil_mode,
                                   'use_mkldnn', False, 'exclusive', True,
                                   'data_format', data_format)
D
Double_V 已提交
1254
            return output
1255

1256
    op_type = "max_pool3d_with_index" if return_mask else "pool3d"
1257
    helper = LayerHelper(op_type, **locals())
1258
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'max_pool3d')
1259
    dtype = helper.input_dtype(input_param_name='x')
1260
    pool_out = helper.create_variable_for_type_inference(dtype)
1261
    mask = helper.create_variable_for_type_inference('int32')
1262 1263
    outputs = {"Out": pool_out, "Mask": mask}

1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
    helper.append_op(type=op_type,
                     inputs={"X": x},
                     outputs=outputs,
                     attrs={
                         "pooling_type": 'max',
                         "ksize": kernel_size,
                         "global_pooling": False,
                         "strides": stride,
                         "paddings": padding,
                         "padding_algorithm": padding_algorithm,
                         "use_cudnn": True,
                         "ceil_mode": ceil_mode,
                         "use_mkldnn": False,
                         "exclusive": False,
                         "data_format": data_format,
                     })
1280

1281
    return (pool_out, mask) if return_mask else pool_out
1282 1283


1284
def adaptive_avg_pool1d(x, output_size, name=None):
1285
    """
1286 1287 1288 1289
    Adaptive average pooling 1d operation on :attr:`x` according to :attr:`output_size`. 
    
    Notes:
        See more details in :ref:`api_nn_pooling_AdaptiveAvgPool1d` .
D
Double_V 已提交
1290

1291
    Args:
1292 1293 1294
        x (Tensor): The input Tensor of pooling, which is a 3-D tensor with shape :math:`[N, C, L]`, where :math:`N` is batch size, :math:`C` is the number of channels and :math:`L` is the length of the feature. The data type is float32 or float64.
        output_size (int): The target output size. Its data type must be int.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1295
    Returns:
1296
        Tensor: The result of 1D adaptive average pooling. Its data type is same as input.
1297 1298
    Examples:
        .. code-block:: python
1299
          :name: adaptive_avg_pool1d-example
B
Bai Yifan 已提交
1300

1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
              # average adaptive pool1d
              # suppose input data in shape of [N, C, L], `output_size` is m or [m],
              # output shape is [N, C, m], adaptive pool divide L dimension
              # of input data into m grids averagely and performs poolings in each
              # grid to get output.
              # adaptive max pool performs calculations as follow:
              #
              #     for i in range(m):
              #         lstart = floor(i * L / m)
              #         lend = ceil((i + 1) * L / m)
              #         output[:, :, i] = sum(input[:, :, lstart: lend])/(lstart - lend)
              #
              import paddle
              import paddle.nn.functional as F
1315

1316 1317
              data = paddle.uniform([1, 3, 32])
              pool_out = F.adaptive_avg_pool1d(data, output_size=16)
1318 1319 1320
              # pool_out shape: [1, 3, 16])
    """
    pool_type = 'avg'
Z
zhiboniu 已提交
1321
    if not in_dynamic_mode():
1322 1323 1324
        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                                 'adaptive_pool2d')
        check_type(output_size, 'pool_size', (int), 'adaptive_pool1d')
1325 1326
    _check_input(x, 3)
    pool_size = [1] + utils.convert_to_list(output_size, 1, 'pool_size')
1327

1328
    x = unsqueeze(x, [2])
Z
zhiboniu 已提交
1329
    if in_dynamic_mode():
W
wanghuancoder 已提交
1330 1331
        pool_out = _C_ops.pool2d(x, 'pooling_type', pool_type, 'ksize',
                                 pool_size, 'adaptive', True)
1332
        return squeeze(pool_out, [2])
1333

1334 1335
    l_type = "pool2d"

1336
    helper = LayerHelper(l_type, **locals())
1337
    dtype = helper.input_dtype(input_param_name='x')
1338 1339
    pool_out = helper.create_variable_for_type_inference(dtype)

1340
    outputs = {"Out": pool_out}
1341 1342 1343 1344 1345 1346 1347 1348
    helper.append_op(type=l_type,
                     inputs={"X": x},
                     outputs=outputs,
                     attrs={
                         "pooling_type": pool_type,
                         "ksize": pool_size,
                         "adaptive": True,
                     })
1349

1350
    return squeeze(pool_out, [2])
1351 1352


1353 1354
def adaptive_avg_pool2d(x, output_size, data_format='NCHW', name=None):
    """
1355 1356
    This API implements adaptive average pooling 2d operation.
    See more details in :ref:`api_nn_pooling_AdaptiveAvgPool2d` .
1357 1358 1359

    Args:
        x (Tensor): The input tensor of adaptive avg pool2d operator, which is a 4-D tensor.
1360
                          The data type can be float32 or float64.
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
        output_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two element, (H, W). H and W can be either a int, or None which means
            the size will be the same as that of the input.
        data_format (str): The data format of the input and output data. An optional string
            from: "NCHW", "NHWC". The default is "NCHW". When it is "NCHW", the data is stored in
            the order of: [batch_size, input_channels, input_height, input_width].
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
    Returns:
        Tensor: The output tensor of avg adaptive pool2d result. The data type is same as input tensor.
    Raises:
        ValueError: If `data_format` is not "NCHW" or "NHWC".
    Examples:
        .. code-block:: python
B
Bai Yifan 已提交
1376

1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393
            # adaptive avg pool2d
            # suppose input data in shape of [N, C, H, W], `output_size` is [m, n],
            # output shape is [N, C, m, n], adaptive pool divide H and W dimensions
            # of input data into m * n grids averagely and performs poolings in each
            # grid to get output.
            # adaptive avg pool performs calculations as follow:
            #
            #     for i in range(m):
            #         for j in range(n):
            #             hstart = floor(i * H / m)
            #             hend = ceil((i + 1) * H / m)
            #             wstart = floor(i * W / n)
            #             wend = ceil((i + 1) * W / n)
            #             output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend])
            #
            import paddle
            import numpy as np
1394

1395 1396 1397
            input_data = np.random.rand(2, 3, 32, 32)
            x = paddle.to_tensor(input_data)
            # x.shape is [2, 3, 32, 32]
1398
            out = paddle.nn.functional.adaptive_avg_pool2d(
1399 1400
                            x = x,
                            output_size=[3, 3])
1401
            # out.shape is [2, 3, 3, 3]
1402
    """
Z
zhiboniu 已提交
1403
    if not in_dynamic_mode():
1404
        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
1405
                                 'adaptive_avg_pool2d')
1406
        check_type(data_format, 'data_format', str, 'adaptive_avg_pool2d')
1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420

    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
            "Attr(data_format): %s." % str(data_format))

    if data_format == "NCHW":
        in_h, in_w = x.shape[2:4]
    else:
        in_h, in_w = x.shape[1:3]

    if isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
1421
        output_size = list(output_size)
1422 1423 1424 1425 1426
        if output_size[0] == None:
            output_size[0] = in_h
        if output_size[1] == None:
            output_size[1] = in_w

F
From00 已提交
1427
    if in_dygraph_mode():
1428 1429 1430 1431
        return _C_ops.final_state_pool2d_gpudnn_unused(x, output_size, [1, 1],
                                                       [0, 0], False, True,
                                                       data_format, 'avg',
                                                       False, True, "EXPLICIT")
F
From00 已提交
1432 1433 1434 1435 1436

    if _in_legacy_dygraph():
        return _C_ops.pool2d(x, 'pooling_type', 'avg', 'ksize', output_size,
                             'global_pooling', False, 'adaptive', True,
                             'data_format', data_format)
1437 1438 1439 1440

    l_type = 'pool2d'

    helper = LayerHelper(l_type, **locals())
1441
    dtype = helper.input_dtype(input_param_name='x')
1442 1443 1444 1445
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}

1446 1447 1448 1449 1450 1451 1452 1453 1454
    helper.append_op(type=l_type,
                     inputs={"X": x},
                     outputs=outputs,
                     attrs={
                         "pooling_type": "avg",
                         "ksize": output_size,
                         "adaptive": True,
                         "data_format": data_format,
                     })
1455 1456 1457 1458 1459 1460

    return pool_out


def adaptive_avg_pool3d(x, output_size, data_format='NCDHW', name=None):
    """
1461 1462
    This API implements adaptive average pooling 3d operation.
    See more details in :ref:`api_nn_pooling_AdaptiveAvgPool3d` .
1463 1464 1465

    Args:
        x (Tensor): The input tensor of adaptive avg pool3d operator, which is a 5-D tensor.
1466
                          The data type can be float32, float64.
1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481
        output_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain three elements, (D, H, W). D, H and W can be either a int, or None which means
            the size will be the same as that of the input.
        data_format (str): The data format of the input and output data. An optional string
            from: "NCDHW", "NDHWC". The default is "NCDHW". When it is "NCDHW", the data is stored in
            the order of: [batch_size, input_channels, input_depth, input_height, input_width].
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
    Returns:
        Tensor: The output tensor of avg adaptive pool3d result. The data type is same as input tensor.
    Raises:
        ValueError: If `data_format` is not "NCDHW" or "NDHWC".
    Examples:
        .. code-block:: python
B
Bai Yifan 已提交
1482

1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
            # adaptive avg pool3d
            # suppose input data in shape of [N, C, D, H, W], `output_size` is [l, m, n],
            # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimensions
            # of input data into l * m * n grids averagely and performs poolings in each
            # grid to get output.
            # adaptive avg pool performs calculations as follow:
            #
            #     for i in range(l):
            #         for j in range(m):
            #             for k in range(n):
            #                 dstart = floor(i * D / l)
            #                 dend = ceil((i + 1) * D / l)
            #                 hstart = floor(j * H / m)
            #                 hend = ceil((j + 1) * H / m)
            #                 wstart = floor(k * W / n)
            #                 wend = ceil((k + 1) * W / n)
            #                 output[:, :, i, j, k] =
            #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
            import paddle
            import numpy as np
            input_data = np.random.rand(2, 3, 8, 32, 32)
            x = paddle.to_tensor(input_data)
            # x.shape is [2, 3, 8, 32, 32]
1506
            out = paddle.nn.functional.adaptive_avg_pool3d(
1507 1508
                            x = x,
                            output_size=[3, 3, 3])
1509
            # out.shape is [2, 3, 3, 3, 3]
1510
    """
Z
zhiboniu 已提交
1511
    if not in_dynamic_mode():
1512 1513
        check_variable_and_dtype(x, 'x', ['float32', 'float64'],
                                 'adaptive_avg_pool3d')
1514
        check_type(data_format, 'data_format', str, 'adaptive_avg_pool3d')
1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528

    if data_format not in ["NCDHW", "NDHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
            "Attr(data_format): %s." % str(data_format))

    if data_format == "NCDHW":
        in_l, in_h, in_w = x.shape[2:5]
    else:
        in_l, in_h, in_w = x.shape[1:4]

    if isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 3, 'output_size')
    else:
1529
        output_size = list(output_size)
1530 1531 1532 1533 1534 1535 1536
        if output_size[0] == None:
            output_size[0] = in_l
        if output_size[1] == None:
            output_size[1] = in_h
        if output_size[2] == None:
            output_size[2] = in_w

Z
zhiboniu 已提交
1537
    if in_dynamic_mode():
F
From00 已提交
1538 1539 1540
        return _C_ops.pool3d(x, 'pooling_type', 'avg', 'ksize', output_size,
                             'global_pooling', False, 'adaptive', True,
                             'data_format', data_format)
1541 1542 1543 1544

    l_type = 'pool3d'

    helper = LayerHelper(l_type, **locals())
1545
    dtype = helper.input_dtype(input_param_name='x')
1546 1547 1548
    pool_out = helper.create_variable_for_type_inference(dtype)
    outputs = {"Out": pool_out}

1549 1550 1551 1552 1553 1554 1555 1556 1557
    helper.append_op(type=l_type,
                     inputs={"X": x},
                     outputs=outputs,
                     attrs={
                         "pooling_type": "avg",
                         "ksize": output_size,
                         "adaptive": True,
                         "data_format": data_format,
                     })
1558 1559

    return pool_out
1560 1561


1562
def adaptive_max_pool1d(x, output_size, return_mask=False, name=None):
1563 1564 1565 1566 1567 1568 1569 1570 1571
    """
    This API implements adaptive max pooling 1d operation.
    See more details in :ref:`api_nn_pooling_AdaptiveMaxPool1d` .

    Args:
        x (Tensor): The input tensor of pooling operator, which is a 3-D tensor
                              with shape [N, C, L].  The format of input tensor is NCL,
                              where N is batch size, C is the number of channels, L is the
                              length of the feature. The data type is float32 or float64.
1572
        output_size (int): The pool kernel size. The value should be an integer.
1573
        return_mask (bool): If true, the index of max pooling point will be returned along
1574 1575 1576 1577 1578 1579 1580 1581
                with outputs. It cannot be set in average pooling type. Default False.
        name(str, optional): For detailed information, please refer
                                 to :ref:`api_guide_Name`. Usually name is no need to set and
                                 None by default.
    Returns:
            Tensor: The output tensor of adaptive pooling result. The data type is same
                      as input tensor.
    Raises:
1582
            ValueError: 'output_size' should be an integer.
1583 1584
    Examples:
        .. code-block:: python
1585

1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
              # max adaptive pool1d
              # suppose input data in shape of [N, C, L], `output_size` is m or [m],
              # output shape is [N, C, m], adaptive pool divide L dimension
              # of input data into m grids averagely and performs poolings in each
              # grid to get output.
              # adaptive max pool performs calculations as follow:
              #
              #     for i in range(m):
              #         lstart = floor(i * L / m)
              #         lend = ceil((i + 1) * L / m)
              #         output[:, :, i] = max(input[:, :, lstart: lend])
              #
              import paddle
              import paddle.nn.functional as F
C
Chen Long 已提交
1600
              import numpy as np
1601

1602 1603 1604
              data = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32]).astype(np.float32))
              pool_out = F.adaptive_max_pool1d(data, output_size=16)
              # pool_out shape: [1, 3, 16])
1605
              pool_out, indices = F.adaptive_max_pool1d(data, output_size=16, return_mask=True)
1606 1607 1608
              # pool_out shape: [1, 3, 16] indices  shape: [1, 3, 16]
    """
    pool_type = 'max'
Z
zhiboniu 已提交
1609
    if not in_dynamic_mode():
1610 1611 1612 1613
        check_variable_and_dtype(x, 'x', ['float32', 'float64'],
                                 'adaptive_max_pool1d')
        check_type(output_size, 'pool_size', int, 'adaptive_max_pool1d')
        check_type(return_mask, 'return_mask', bool, 'adaptive_max_pool1d')
1614 1615 1616 1617 1618
    _check_input(x, 3)

    pool_size = [1] + utils.convert_to_list(output_size, 1, 'pool_size')

    x = unsqueeze(x, [2])
Z
zhiboniu 已提交
1619
    if in_dynamic_mode():
1620 1621 1622
        pool_out = _C_ops.max_pool2d_with_index(x, 'pooling_type', pool_type,
                                                'ksize', pool_size, 'adaptive',
                                                True)
1623
        return (squeeze(pool_out[0], [2]), squeeze(
1624
            pool_out[1], [2])) if return_mask else squeeze(pool_out[0], [2])
1625

1626 1627
    l_type = 'max_pool2d_with_index'

1628
    helper = LayerHelper(l_type, **locals())
1629
    dtype = helper.input_dtype(input_param_name='x')
1630 1631
    pool_out = helper.create_variable_for_type_inference(dtype)

1632
    mask = helper.create_variable_for_type_inference('int32')
1633 1634
    outputs = {"Out": pool_out, "Mask": mask}

1635 1636 1637 1638 1639 1640 1641 1642
    helper.append_op(type=l_type,
                     inputs={"X": x},
                     outputs=outputs,
                     attrs={
                         "pooling_type": pool_type,
                         "ksize": pool_size,
                         "adaptive": True,
                     })
1643 1644

    return (squeeze(pool_out, [2]),
1645
            squeeze(mask, [2])) if return_mask else squeeze(pool_out, [2])
1646 1647


1648
def adaptive_max_pool2d(x, output_size, return_mask=False, name=None):
1649 1650 1651
    """
        This operation applies a 2D adaptive max pooling on input tensor.
        See more details in :ref:`api_nn_pooling_AdaptiveMaxPool2d` .
1652

1653 1654 1655
        Args:
            x (Tensor): The input tensor of adaptive max pool2d operator, which is a 4-D tensor. The data type can be float16, float32, float64, int32 or int64.
            output_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list, it must contain two elements, (H, W). H and W can be either a int, or None which means the size will be the same as that of the input.
1656
            return_mask (bool): If true, the index of max pooling point will be returned along with outputs. Default False.
1657
            name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`. Usually name is no need to set and None by default.
1658

1659 1660
        Returns:
            Tensor: The output tensor of adaptive max pool2d result. The data type is same as input tensor.
1661

1662 1663
        Examples:
            .. code-block:: python
1664

1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681
              # max adaptive pool2d
              # suppose input data in the shape of [N, C, H, W], `output_size` is [m, n]
              # output shape is [N, C, m, n], adaptive pool divide H and W dimensions
              # of input data into m*n grids averagely and performs poolings in each
              # grid to get output.
              # adaptive max pool performs calculations as follow:
              #
              #     for i in range(m):
              #         for j in range(n):
              #             hstart = floor(i * H / m)
              #             hend = ceil((i + 1) * H / m)
              #             wstart = floor(i * W / n)
              #             wend = ceil((i + 1) * W / n)
              #             output[:, :, i, j] = max(input[:, :, hstart: hend, wstart: wend])
              #
              import paddle
              import numpy as np
1682

1683 1684 1685 1686 1687 1688 1689 1690
              input_data = np.random.rand(2, 3, 32, 32)
              x = paddle.to_tensor(input_data)
              # x.shape is [2, 3, 32, 32]
              out = paddle.nn.functional.adaptive_max_pool2d(
                            x = x,
                            output_size=[3, 3])
              # out.shape is [2, 3, 3, 3]
    """
Z
zhiboniu 已提交
1691
    if not in_dynamic_mode():
1692 1693
        check_variable_and_dtype(x, 'x', ['float32', 'float64'],
                                 'adaptive_max_pool2d')
1694 1695
        check_type(return_mask, 'return_mask', bool, 'adaptive_max_pool2d')
        #check_type(output_size, 'pool_size', (int), 'adaptive_max_pool2d')
1696 1697 1698 1699 1700 1701
    _check_input(x, 4)

    in_h, in_w = x.shape[2:4]
    if isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
1702
        output_size = list(output_size)
1703 1704 1705 1706 1707
        if output_size[0] == None:
            output_size[0] = in_h
        if output_size[1] == None:
            output_size[1] = in_w

Z
zhiboniu 已提交
1708
    if in_dynamic_mode():
1709 1710 1711
        pool_out = _C_ops.max_pool2d_with_index(x, 'pooling_type', 'max',
                                                'ksize', output_size,
                                                'adaptive', True)
1712
        return pool_out if return_mask else pool_out[0]
1713 1714 1715 1716

    l_type = 'max_pool2d_with_index'

    helper = LayerHelper(l_type, **locals())
1717
    dtype = helper.input_dtype(input_param_name='x')
1718 1719
    pool_out = helper.create_variable_for_type_inference(dtype)

1720
    mask = helper.create_variable_for_type_inference('int32')
1721 1722
    outputs = {"Out": pool_out, "Mask": mask}

1723 1724 1725 1726 1727 1728 1729 1730
    helper.append_op(type=l_type,
                     inputs={"X": x},
                     outputs=outputs,
                     attrs={
                         "pooling_type": 'max',
                         "ksize": output_size,
                         "adaptive": True,
                     })
1731
    #return (pool_out, mask) if return_mask else pool_out
1732 1733 1734
    return pool_out


1735
def adaptive_max_pool3d(x, output_size, return_mask=False, name=None):
1736 1737 1738
    """
        This operation applies a 3D adaptive max pooling on input tensor.
        See more details in :ref:`api_nn_pooling_AdaptiveMaxPool3d` .
1739

1740 1741 1742
        Args:
            x (Tensor): The input tensor of adaptive max pool3d operator, which is a 5-D tensor. The data type can be float32, float64.
            output_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list, it must contain three elements, (D, H, W). D, H and W can be either a int, or None which means the size will be the same as that of the input.
1743
            return_mask (bool): If true, the index of max pooling point will be returned along with outputs. Default False.
1744
            name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`. Usually name is no need to set and None by default.
1745

1746 1747
        Returns:
            Tensor: The output tensor of adaptive max pool3d result. The data type is same as input tensor.
1748

1749 1750
        Examples:
            .. code-block:: python
1751

1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771
              # adaptive max pool3d
              # suppose input data in the shape of [N, C, D, H, W], `output_size` is [l, m, n]
              # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimensions
              # of input data into m*n grids averagely and performs poolings in each
              # grid to get output.
              # adaptive max pool performs calculations as follow:
              #
              #     for i in range(l):
              #         for j in range(m):
              #             for k in range(n):
              #                 dstart = floor(i * D / l)
              #                 dend = ceil((i + 1) * D / l)
              #                 hstart = floor(i * H / m)
              #                 hend = ceil((i + 1) * H / m)
              #                 wstart = floor(i * W / n)
              #                 wend = ceil((i + 1) * W / n)
              #             output[:, :, i, j, k] = max(input[:, :, dstart: dend, hstart: hend, wstart: wend])
              #
              import paddle
              import numpy as np
1772

1773 1774 1775 1776 1777 1778 1779 1780 1781
              input_data = np.random.rand(2, 3, 8, 32, 32)
              x = paddle.to_tensor(input_data)
              # x.shape is [2, 3, 8, 32, 32]
              out = paddle.nn.functional.adaptive_max_pool3d(
                            x = x,
                            output_size=[3, 3, 3])
              # out.shape is [2, 3, 3, 3, 3]
    """

Z
zhiboniu 已提交
1782
    if not in_dynamic_mode():
1783 1784
        check_variable_and_dtype(x, 'x', ['float32', 'float64'],
                                 'adaptive_max_pool3d')
1785 1786
        check_type(return_mask, 'return_mask', bool, 'adaptive_max_pool3d')
        #check_type(output_size, 'pool_size', (int), 'adaptive_max_pool3d')
1787 1788 1789 1790 1791 1792
    _check_input(x, 5)

    in_l, in_h, in_w = x.shape[2:5]
    if isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 3, 'output_size')
    else:
1793
        output_size = list(output_size)
1794 1795 1796 1797 1798 1799 1800
        if output_size[0] == None:
            output_size[0] = in_l
        if output_size[1] == None:
            output_size[1] = in_h
        if output_size[2] == None:
            output_size[2] = in_w

Z
zhiboniu 已提交
1801
    if in_dynamic_mode():
1802 1803 1804
        pool_out = _C_ops.max_pool3d_with_index(x, 'pooling_type', 'max',
                                                'ksize', output_size,
                                                'adaptive', True)
1805
        return pool_out if return_mask else pool_out[0]
1806 1807 1808 1809

    l_type = 'max_pool3d_with_index'

    helper = LayerHelper(l_type, **locals())
1810
    dtype = helper.input_dtype(input_param_name='x')
1811 1812
    pool_out = helper.create_variable_for_type_inference(dtype)

1813
    mask = helper.create_variable_for_type_inference('int32')
1814 1815
    outputs = {"Out": pool_out, "Mask": mask}

1816 1817 1818 1819 1820 1821 1822 1823
    helper.append_op(type=l_type,
                     inputs={"X": x},
                     outputs=outputs,
                     attrs={
                         "pooling_type": 'max',
                         "ksize": output_size,
                         "adaptive": True,
                     })
1824

1825
    return (pool_out, mask) if return_mask else pool_out