trt_plugin.h 7.3 KB
Newer Older
N
nhzlx 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

17
#include <NvInfer.h>
N
nhzlx 已提交
18
#include <cstring>
19
#include <string>
N
nhzlx 已提交
20
#include <unordered_map>
N
nhzlx 已提交
21
#include <utility>
N
nhzlx 已提交
22 23
#include <vector>

24
#include "paddle/fluid/inference/tensorrt/helper.h"
N
nhzlx 已提交
25
#include "paddle/fluid/inference/tensorrt/plugin/trt_plugin_utils.h"
26 27 28 29
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/profiler.h"

DECLARE_bool(profile);
N
nhzlx 已提交
30 31 32 33

namespace paddle {
namespace inference {
namespace tensorrt {
34
namespace plugin {
N
nhzlx 已提交
35

N
nhzlx 已提交
36 37 38 39 40 41 42
class PluginTensorRT;

typedef std::function<PluginTensorRT*(const void*, size_t)>
    PluginDeserializeFunc;

typedef std::function<PluginTensorRT*(void)> PluginConstructFunc;

N
nhzlx 已提交
43 44
class PluginTensorRT : public nvinfer1::IPluginExt {
 public:
45
  PluginTensorRT() : with_fp16_(false) {}
46 47
  // It was used for TensorRT deserialization.
  // It should not be called by users.
N
nhzlx 已提交
48
  PluginTensorRT(const void* serialized_data, size_t length) {}
49 50
  virtual ~PluginTensorRT() {}

N
nhzlx 已提交
51 52 53 54 55 56 57
  nvinfer1::Dims const& getInputDims(int index) const {
    return input_dims_.at(index);
  }
  size_t getMaxBatchSize() const { return max_batch_size_; }
  nvinfer1::DataType getDataType() const { return data_type_; }
  nvinfer1::PluginFormat getDataFormat() const { return data_format_; }
  virtual const char* getPluginVersion() const { return "1"; }
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72

  void AddInput(nvinfer1::ITensor* input) { inputs_.push_back(input); }
  std::vector<nvinfer1::ITensor*>& GetInputs() { return inputs_; }

  virtual nvinfer1::IPluginExt* clone() const = 0;
  virtual const char* getPluginType() const = 0;

  // Following functions are inherit from nvinfer1::IPluginExt
  // Get the number of outputs from the layer
  int getNbOutputs() const { return 1; }
  // Get the dimension of an output tensor
  virtual nvinfer1::Dims getOutputDimensions(int index,
                                             const nvinfer1::Dims* input_dims,
                                             int num_inputs) = 0;
  // Find the workspace size required by the layer
N
nhzlx 已提交
73
  size_t getWorkspaceSize(int) const override { return 0; }
74 75 76 77 78

  // Initialize the layer for execution.
  // This is called when the engine is created.
  int initialize() override { return 0; }
  // Shutdown the layer. This is called when the engine is destroyed
N
nhzlx 已提交
79
  void terminate() override {}
80 81 82 83 84 85 86 87 88 89 90
  // Execute the layer
  virtual int enqueue(int batch_size, const void* const* inputs, void** outputs,
                      void* workspace, cudaStream_t stream) = 0;

  // Find the size of the serialization buffer required
  virtual size_t getSerializationSize() = 0;
  // Serialize the layer config to buffer.
  // TensorRT will call this func to serialize the configuration of TensorRT
  // engine. It should not be called by users.
  virtual void serialize(void* buffer) = 0;

N
nhzlx 已提交
91
  // Check format support. The default is FLOAT32 and NCHW.
N
nhzlx 已提交
92 93
  bool supportsFormat(nvinfer1::DataType type,
                      nvinfer1::PluginFormat format) const override;
94 95 96
  // Configure the layer
  void configureWithFormat(const nvinfer1::Dims* input_dims, int num_inputs,
                           const nvinfer1::Dims* output_dims, int num_outputs,
N
nhzlx 已提交
97 98
                           nvinfer1::DataType type,
                           nvinfer1::PluginFormat format,
99
                           int max_batch_size) override;
N
nhzlx 已提交
100 101

 protected:
N
nhzlx 已提交
102
  // Deserialize input_dims, max_batch_size, data_type, data_format
103 104
  void deserializeBase(void const*& serial_data,  // NOLINT
                       size_t& serial_length);    // NOLINT
N
nhzlx 已提交
105
  size_t getBaseSerializationSize();
N
nhzlx 已提交
106
  // Serialize input_dims, max_batch_size, data_type, data_format
107
  void serializeBase(void*& buffer);  // NOLINT
N
nhzlx 已提交
108 109 110 111 112

  std::vector<nvinfer1::Dims> input_dims_;
  size_t max_batch_size_;
  nvinfer1::DataType data_type_;
  nvinfer1::PluginFormat data_format_;
113 114

  std::vector<nvinfer1::ITensor*> inputs_;
115
  bool with_fp16_;
N
nhzlx 已提交
116 117
};

118 119 120
#if IS_TRT_VERSION_GE(6000)
class DynamicPluginTensorRT : public nvinfer1::IPluginV2DynamicExt {
 public:
121
  DynamicPluginTensorRT() : with_fp16_(false) {}
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
  DynamicPluginTensorRT(const void* serialized_data, size_t length) {}

  // The Func in IPluginExt or IpluginExtV2
  virtual const char* getPluginVersion() const { return "1"; }
  virtual const char* getPluginType() const = 0;
  int getNbOutputs() const { return 1; }
  int initialize() override { return 0; }
  void terminate() override{};

  virtual size_t getSerializationSize() const = 0;
  virtual void serialize(void* buffer) const = 0;

  // The Func in IPluginV2
  nvinfer1::IPluginV2DynamicExt* clone() const = 0;
  virtual nvinfer1::DimsExprs getOutputDimensions(
      int output_index, const nvinfer1::DimsExprs* inputs, int nb_inputs,
      nvinfer1::IExprBuilder& expr_builder) = 0;  // NOLINT

  virtual bool supportsFormatCombination(
      int pos, const nvinfer1::PluginTensorDesc* in_out, int nb_inputs,
      int nb_outputs) = 0;

  virtual void configurePlugin(const nvinfer1::DynamicPluginTensorDesc* in,
                               int nb_inputs,
                               const nvinfer1::DynamicPluginTensorDesc* out,
                               int nb_outputs) = 0;

  size_t getWorkspaceSize(const nvinfer1::PluginTensorDesc* inputs,
                          int nb_inputs,
                          const nvinfer1::PluginTensorDesc* outputs,
                          int nb_outputs) const override {
    return 0;
  }

  virtual int enqueue(const nvinfer1::PluginTensorDesc* input_desc,
                      const nvinfer1::PluginTensorDesc* output_desc,
                      const void* const* inputs, void* const* outputs,
                      void* workspace, cudaStream_t stream) = 0;

  virtual nvinfer1::DataType getOutputDataType(
      int index, const nvinfer1::DataType* input_types,
      int nb_inputs) const = 0;
  void setPluginNamespace(const char* plugin_namespace) override {
    name_space_ = plugin_namespace;
  }
  const char* getPluginNamespace() const override {
    return name_space_.c_str();
  }
  virtual void destroy() = 0;

 protected:
  void deserializeBase(void const*& serial_data,  // NOLINT
                       size_t& serial_length);    // NOLINT
  size_t getBaseSerializationSize() const;
  void serializeBase(void*& buffer) const;  // NOLINT
177
  bool with_fp16_;
178 179

 private:
P
Pei Yang 已提交
180 181
  std::string name_space_;
  std::string plugin_base_;
182 183
};

P
Pei Yang 已提交
184 185 186
template <typename T>
class TrtPluginRegistrarV2 {
 public:
187 188 189 190 191 192
  TrtPluginRegistrarV2() {
    static auto func_ptr = GetPluginRegistry();
    if (func_ptr != nullptr) {
      func_ptr->registerCreator(creator, "");
    }
  }
P
Pei Yang 已提交
193 194 195 196 197 198 199 200 201

 private:
  T creator;
};

#define REGISTER_TRT_PLUGIN_V2(name)                                     \
  static paddle::inference::tensorrt::plugin::TrtPluginRegistrarV2<name> \
      plugin_registrar_##name {}

202 203
#endif

204
}  // namespace plugin
N
nhzlx 已提交
205 206 207
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle