elementwise_pow_op.h 3.1 KB
Newer Older
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <cmath>
15
#include <type_traits>
16
#include "paddle/fluid/operators/elementwise/elementwise_op.h"
W
Wu Yi 已提交
17
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
Q
Qiao Longfei 已提交
18 19 20 21 22 23

namespace paddle {
namespace operators {

template <typename T>
struct PowFunctor {
24 25 26 27 28 29 30 31 32 33 34 35
  inline HOSTDEVICE T operator()(T a, T b) const {
#ifdef __CUDA_ARCH__
    // On CUDAPlace, std::pow(3, 1) calls pow(float, float), and
    // it will return a float number like 2.99... , which floor to 2
    // when cast to int by default and it is wrong.
    // Use llrint to cast it to the nearest integer, which is 3.
    if (std::is_integral<T>::value) {
      return std::llrint(std::pow(a, b));
    }
#endif
    return std::pow(a, b);
  }
Q
Qiao Longfei 已提交
36 37 38 39 40 41
};

template <typename DeviceContext, typename T>
class ElementwisePowKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
42
    using Tensor = framework::LoDTensor;
C
chengduoZH 已提交
43
    auto* x = ctx.Input<Tensor>("X");
44 45
    PADDLE_ENFORCE(x != nullptr,
                   "Cannot get input Variable X, variable name = %s",
H
hong 已提交
46
                   ctx.InputName("X"));
C
chengduoZH 已提交
47 48 49 50
    auto* y = ctx.Input<Tensor>("Y");
    auto* z = ctx.Output<Tensor>("Out");
    z->mutable_data<T>(ctx.GetPlace());
    int axis = ctx.Attr<int>("axis");
C
chengduoZH 已提交
51 52
    ElementwiseComputeEx<PowFunctor<T>, DeviceContext, T>(ctx, x, y, axis,
                                                          PowFunctor<T>(), z);
Q
Qiao Longfei 已提交
53 54 55
  }
};

56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
template <typename T>
struct PowGradDX {
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const {
    return dout * y * std::pow(x, y - 1);
  }
};

template <typename T>
struct PowGradDY {
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const {
    return dout * std::log(x) * std::pow(x, y);
  }
};

template <typename DeviceContext, typename T>
class ElementwisePowGradKernel : public ElemwiseGradKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    ElemwiseGradKernel<T>::Compute(ctx);
    using Tensor = framework::Tensor;
    auto* x = ctx.Input<Tensor>("X");
    auto* y = ctx.Input<Tensor>("Y");
    auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* out = dout;
    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));
    int axis = ctx.Attr<int>("axis");
    ElemwiseGradCompute<DeviceContext, T, PowGradDX<T>, PowGradDY<T>>(
        ctx, *x, *y, *out, *dout, axis, dx, dy, PowGradDX<T>(), PowGradDY<T>());
  }
};
Q
Qiao Longfei 已提交
87 88
}  // namespace operators
}  // namespace paddle