gather_op_handle_test.cc 7.1 KB
Newer Older
C
chengduoZH 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
//   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/framework/details/gather_op_handle.h"
#include "gtest/gtest.h"

#include "paddle/fluid/platform/device_context.h"

namespace f = paddle::framework;
namespace p = paddle::platform;

// test data amount
const f::DDim kDims = {20, 20};

class GatherTester : public ::testing::Test {
 public:
  void InitCtx(bool use_gpu) {
    if (use_gpu) {
#ifdef PADDLE_WITH_CUDA
      int count = p::GetCUDADeviceCount();
      if (count <= 1) {
        LOG(WARNING) << "Cannot test multi-gpu Gather, because the CUDA "
                        "device count is "
                     << count;
        exit(0);
      }
      for (int i = 0; i < count; ++i) {
        auto p = p::CUDAPlace(i);
        gpu_list_.push_back(p);
        ctxs_.emplace_back(new p::CUDADeviceContext(p));
      }
#else
      PADDLE_THROW("CUDA is not support.");
#endif
    } else {
      int count = 8;
      for (int i = 0; i < count; ++i) {
        auto p = p::CPUPlace();
        gpu_list_.push_back(p);
        ctxs_.emplace_back(new p::CPUDeviceContext(p));
      }
    }
  }

  template <class T>
  void InitGatherOp(int input_scope_idx) {
    for (size_t j = 0; j < gpu_list_.size(); ++j) {
      local_scope_.push_back(&g_scope_.NewScope());
      auto* out_var = local_scope_[j]->Var("input");
      out_var->GetMutable<T>();
    }
    auto* in_var = local_scope_[input_scope_idx]->Var("out");
    in_var->GetMutable<T>();

    gather_op_handle_ = new f::details::GatherOpHandle(local_scope_, gpu_list_);

    f::details::VarHandle* out_var_handle = new f::details::VarHandle();
    out_var_handle->place_ = gpu_list_[input_scope_idx];
    out_var_handle->name_ = "out";
    out_var_handle->version_ = 2;
    out_var_handle->scope_idx_ = input_scope_idx;
    out_var_handle->generated_op_ = gather_op_handle_;
    gather_op_handle_->AddOutput(out_var_handle);

    for (size_t j = 0; j < gpu_list_.size(); ++j) {
      gather_op_handle_->dev_ctxes_[gpu_list_[j]] = ctxs_[j];
      f::details::VarHandle* in_var_handle = new f::details::VarHandle();
      in_var_handle->place_ = gpu_list_[j];
      in_var_handle->name_ = "input";
      in_var_handle->version_ = 1;
      in_var_handle->scope_idx_ = j;
      in_var_handle->generated_op_ = nullptr;
      gather_op_handle_->AddInput(in_var_handle);
    }
  }
  void GatherOpDestroy() {
    for (auto in : gather_op_handle_->inputs_) {
      delete in;
    }
    for (auto out : gather_op_handle_->outputs_) {
      delete out;
    }
    delete gather_op_handle_;
    for (size_t j = 0; j < ctxs_.size(); ++j) {
      delete ctxs_[j];
    }
  }

  void WaitAll() {
    for (size_t j = 0; j < ctxs_.size(); ++j) {
      ctxs_[j]->Wait();
    }
  }

  void TestGatherLodTensor() {
    //    int input_scope_idx = 0;
    //    InitGatherOp<f::LoDTensor>(input_scope_idx);
    //
    //    auto in_var = local_scope_[input_scope_idx]->Var("input");
    //    auto in_lod_tensor = in_var->GetMutable<f::LoDTensor>();
    //    in_lod_tensor->mutable_data<float>(kDims, gpu_list_[input_scope_idx]);
    //
    //    std::vector<float> send_vector(f::product(kDims), input_scope_idx +
    //    12);
    //    for (size_t k = 0; k < send_vector.size(); ++k) {
    //      send_vector[k] = k;
    //    }
    //    f::LoD lod{{0, 10, 20}};
    //    paddle::framework::TensorFromVector<float>(
    //        send_vector, *(ctxs_[input_scope_idx]), in_lod_tensor);
    //    in_lod_tensor->set_lod(lod);
    //
    //    gather_op_handle_->Run(false);
    //
    //    WaitAll();
    //
    //    p::CPUPlace cpu_place;
    //    for (size_t j = 0; j < gpu_list_.size(); ++j) {
    //      auto out_var = local_scope_[j]->Var("out");
    //      auto out_tensor = out_var->Get<f::LoDTensor>();
    //      PADDLE_ENFORCE_EQ(out_tensor.lod(), lod, "lod is not equal.");
    //
    //      f::Tensor result_tensor;
    //      f::TensorCopy(out_tensor, cpu_place, *(ctxs_[j]), &result_tensor);
    //      float* ct = result_tensor.mutable_data<float>(cpu_place);
    //
    //      for (int64_t j = 0; j < f::product(kDims); ++j) {
    //        ASSERT_NEAR(ct[j], send_vector[j], 1e-5);
    //      }
    //    }
    //
    //    GatherOpDestroy();
  }

  void TestGatherSelectedRows() {
    int output_scope_idx = 0;
    InitGatherOp<f::SelectedRows>(output_scope_idx);

    int height = kDims[0] * 2;
    std::vector<int64_t> rows{0, 1, 2, 3, 3, 0, 14, 7, 3, 1,
                              2, 4, 6, 3, 1, 1, 1,  1, 3, 7};
    std::vector<float> send_vector(f::product(kDims));
    for (size_t k = 0; k < send_vector.size(); ++k) {
      send_vector[k] = k;
    }

    for (size_t input_scope_idx = 0; input_scope_idx < gpu_list_.size();
         ++input_scope_idx) {
      auto in_var = local_scope_[input_scope_idx]->Var("input");
      auto in_selected_rows = in_var->GetMutable<f::SelectedRows>();
      auto value = in_selected_rows->mutable_value();
      value->mutable_data<float>(kDims, gpu_list_[input_scope_idx]);

      in_selected_rows->set_height(height);
      in_selected_rows->set_rows(rows);

      paddle::framework::TensorFromVector<float>(
          send_vector, *(ctxs_[input_scope_idx]), value);
      value->Resize(kDims);
    }

    gather_op_handle_->Run(false);

    WaitAll();

    p::CPUPlace cpu_place;

    auto out_var = local_scope_[output_scope_idx]->Var("out");
    auto& out_select_rows = out_var->Get<f::SelectedRows>();
    auto rt = out_select_rows.value();

    PADDLE_ENFORCE_EQ(out_select_rows.height(), height, "height is not equal.");
    for (size_t k = 0; k < out_select_rows.rows().size(); ++k) {
      PADDLE_ENFORCE_EQ(out_select_rows.rows()[k], rows[k % rows.size()]);
    }

    f::Tensor result_tensor;
    f::TensorCopy(rt, cpu_place, *(ctxs_[output_scope_idx]), &result_tensor);
    float* ct = result_tensor.data<float>();

    for (int64_t j = 0; j < f::product(kDims); ++j) {
      ASSERT_NEAR(ct[j], send_vector[j % send_vector.size()], 1e-5);
    }

    GatherOpDestroy();
  }

 public:
  f::Scope g_scope_;
  std::vector<p::DeviceContext*> ctxs_;
  std::vector<f::Scope*> local_scope_;
  std::vector<p::Place> gpu_list_;
  f::details::GatherOpHandle* gather_op_handle_;
};

// TEST_F(GatherTester, TestCPUGatherTestLodTensor) {
//  InitCtx(false);
//  TestGatherLodTensor();
//}

TEST_F(GatherTester, TestCPUGatherTestSelectedRows) {
  InitCtx(false);
  TestGatherSelectedRows();
}

#ifdef PADDLE_WITH_CUDA
// TEST_F(GatherTester, TestGPUGatherTestLodTensor) {
//  InitCtx(true);
//  TestGatherLodTensor();
//}

TEST_F(GatherTester, TestGPUGatherTestSelectedRows) {
  InitCtx(true);
  TestGatherSelectedRows();
}
#endif