Layer.cpp 12.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/utils/Util.h"

L
Luo Tao 已提交
17
#include "CostLayer.h"
18
#include "paddle/math/SparseMatrix.h"
Y
Yu Yang 已提交
19
#include "paddle/utils/Error.h"
Y
Yu Yang 已提交
20
#include "paddle/utils/Logging.h"
Z
zhangjinchao01 已提交
21

H
hedaoyuan 已提交
22 23 24 25
#ifndef PADDLE_MOBILE_INFERENCE
#include "ValidationLayer.h"
#endif

26
DEFINE_bool(log_error_clipping, false, "enable log error clipping or not");
Z
zhangjinchao01 已提交
27 28 29 30 31 32

namespace paddle {

Layer::Layer(const LayerConfig& config, bool useGpu)
    : config_(config),
      useGpu_(useGpu),
T
tensor-tang 已提交
33
      deviceId_(CPU_DEVICE),
Z
zhangjinchao01 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
      needSequenceInfo_(true) {}

bool Layer::init(const LayerMap& layerMap, const ParameterMap& parameterMap) {
  if (useGpu_ && FLAGS_parallel_nn) {
    /* gpu environment is specified by device property */
    deviceId_ = config_.device();
    if (deviceId_ < 0) {
      useGpu_ = false;
    }
  }

  output_.deviceId = deviceId_;

  for (auto& inputConfig : config_.inputs()) {
    std::string inputName = inputConfig.input_layer_name();
    LayerPtr inputLayer;
    CHECK(mapGet(inputName, layerMap, &inputLayer))
        << "Cannot find input layer " << inputName << " for layer "
        << getName();
    this->addPrev(inputLayer);

    inputLayer->addOutputArgument(deviceId_);

    if (inputConfig.has_input_parameter_name()) {
      ParameterPtr parameter;
      CHECK(
          mapGet(inputConfig.input_parameter_name(), parameterMap, &parameter))
          << "Cannot find input parameter "
          << inputConfig.input_parameter_name() << " for layer " << getName();
      parameter->incShared();
      CHECK_EQ(parameter->getDeviceId(), getDeviceId());
      parameters_.push_back(parameter);
    } else {
      parameters_.push_back(nullptr);
    }

    if (inputConfig.has_input_layer_argument()) {
      inputArgument_.push_back(inputConfig.input_layer_argument());
    } else {
      inputArgument_.push_back("");
    }
  }

  if (config_.has_bias_parameter_name()) {
    CHECK(mapGet(config_.bias_parameter_name(), parameterMap, &biasParameter_))
        << "Cannot find bias parameter " << config_.bias_parameter_name()
        << " for layer " << getName();
    biasParameter_->incShared();
    CHECK_EQ(biasParameter_->getDeviceId(), getDeviceId());
  }

  /* specify the activation function according to the configuration */
  std::string action_type = config_.active_type();
  activation_.reset(ActivationFunction::create(action_type));
  CHECK(activation_);

  initNeedFlags();
  markInBackward_.assign(inputLayers_.size(), false);

  return true;
}

ClassRegistrar<Layer, LayerConfig> Layer::registrar_;

LayerPtr Layer::create(const LayerConfig& config) {
  std::string type = config.type();
L
Luo Tao 已提交
100 101 102 103 104 105 106 107 108

  // NOTE: As following types have illegal character '-',
  // they can not use REGISTER_LAYER to registrar.
  // Besides, to fit with old training models,
  // they can not use '_' instead.
  if (type == "multi-class-cross-entropy")
    return LayerPtr(new MultiClassCrossEntropy(config));
  else if (type == "rank-cost")
    return LayerPtr(new RankingCost(config));
109
#ifndef PADDLE_MOBILE_INFERENCE
L
Luo Tao 已提交
110 111 112 113
  else if (type == "auc-validation")
    return LayerPtr(new AucValidation(config));
  else if (type == "pnpair-validation")
    return LayerPtr(new PnpairValidation(config));
114
#endif
L
Luo Tao 已提交
115

Z
zhangjinchao01 已提交
116 117 118
  return LayerPtr(registrar_.createByType(config.type(), config));
}

119 120 121 122 123
void Layer::resetSpecifyOutput(Argument& output,
                               size_t height,
                               size_t width,
                               bool isValueClean,
                               bool isGradClean) {
Z
zhangjinchao01 已提交
124 125
  SetDevice device(output.deviceId);

126 127
  Matrix::resizeOrCreate(
      output.value, height, width, /* trans */ false, useGpu(output.deviceId));
Z
zhangjinchao01 已提交
128 129 130 131 132
  if (isValueClean) {
    output.value->zeroMem();
  }

  if (passType_ != PASS_TEST && needGradient()) {
133 134
    Matrix::resizeOrCreate(
        output.grad, height, width, /* trans */ false, useGpu(output.deviceId));
Z
zhangjinchao01 已提交
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
    if (isGradClean) {
      output.grad->zeroMem();
    }
  }
}

void Layer::resizeOutput(size_t height, size_t width) {
  resetSpecifyOutput(output_, height, width, false, false);

  for (size_t i = 0; i != outputOtherDevice_.size(); i++) {
    resetSpecifyOutput(outputOtherDevice_[i], height, width, false, false);
  }
}

void Layer::reserveOutput(size_t height, size_t width) {
  resetSpecifyOutput(output_, height, width, false, true);

  for (size_t i = 0; i != outputOtherDevice_.size(); i++) {
    resetSpecifyOutput(outputOtherDevice_[i], height, width, false, true);
  }
}

void Layer::resetOutput(size_t height, size_t width) {
  resetSpecifyOutput(output_, height, width, true, true);

  for (size_t i = 0; i != outputOtherDevice_.size(); i++) {
    resetSpecifyOutput(outputOtherDevice_[i], height, width, true, true);
  }
}

void Layer::addOutputArgument(int deviceId) {
  if (deviceId == deviceId_) {
    output_.countIncrement();
    return;
  } else {
    for (size_t i = 0; i < outputOtherDevice_.size(); i++) {
      if (outputOtherDevice_[i].deviceId == deviceId) {
        outputOtherDevice_[i].countIncrement();
        return;
      }
    }
  }

  Argument argu;
  argu.deviceId = deviceId;
  outputOtherDevice_.push_back(argu);
  outputOtherDevice_.back().countIncrement();
}

void Layer::copyOutputToOtherDevice() {
  for (size_t i = 0; i != outputOtherDevice_.size(); i++) {
    SetDevice device(outputOtherDevice_[i].deviceId);
187 188 189 190 191
    // If outputOtherDevice_[i].value is a CpuMatrix,
    // the copyFrom is a synchronous interface.
    // If outputOtherDevice_[i].value is a GpuMatrix, since subsequent
    // calculations are all on HPPL_STREAM_DEFAULT,
    // copyFrom can be an asynchronous interface.
Z
zhangjinchao01 已提交
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
    outputOtherDevice_[i].value->copyFrom(*getOutputValue(),
                                          HPPL_STREAM_DEFAULT);
    outputOtherDevice_[i].sequenceStartPositions =
        output_.sequenceStartPositions;
    outputOtherDevice_[i].subSequenceStartPositions =
        output_.subSequenceStartPositions;
    outputOtherDevice_[i].cpuSequenceDims = output_.cpuSequenceDims;

    outputOtherDevice_[i].notifyValueReady();
  }
}

void Layer::waitInputValue() {
  for (size_t i = 0; i != inputLayers_.size(); i++) {
    if (inputLayers_[i]->getDeviceId() != deviceId_) {
      getInput(i).waitValueReady();
    }
  }
}

void Layer::waitAndMergeOutputGrad() {
  if (!output_.grad || !outputOtherDevice_.size()) {
    return;
  }

  for (size_t i = 0; i != outputOtherDevice_.size(); i++) {
    outputOtherDevice_[i].waitGradReady();
  }

  /* merge output grad */
  size_t i = 0;
  if (!output_.getAllCount()) {
    output_.grad->copyFrom(*outputOtherDevice_[0].grad, HPPL_STREAM_1);
    hl_stream_synchronize(HPPL_STREAM_1);

    i++;
    if (outputOtherDevice_.size() == 1) return;
  }

231 232 233 234
  Matrix::resizeOrCreate(tmpGrad_,
                         output_.grad->getHeight(),
                         output_.grad->getWidth(),
                         /* trans */ false,
Z
zhangjinchao01 已提交
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
                         useGpu(output_.deviceId));

  for (; i != outputOtherDevice_.size(); i++) {
    tmpGrad_->copyFrom(*outputOtherDevice_[i].grad, HPPL_STREAM_1);
    hl_stream_synchronize(HPPL_STREAM_1);
    output_.grad->add(*tmpGrad_);
  }
}

void Layer::markAllInputGrad() {
  for (size_t i = 0; i != inputLayers_.size(); ++i) {
    if (!markInBackward_[i]) {
      inputLayers_[i]->getOutput(deviceId_).notifyGradReady();
    }
    markInBackward_[i] = false;
  }
}

void Layer::markInputGrad(int inputIndex) {
  inputLayers_[inputIndex]->getOutput(deviceId_).notifyGradReady();
  markInBackward_[inputIndex] = true;
}

void Layer::zeroGrad() {
  CHECK(output_.grad.get() != NULL);
  output_.grad->zeroMem();
}

void Layer::initNeedFlags() {
264 265
  auto initFlag = [this](
      bool& flag, bool (Layer::*flagQueryFunc)() const, ParameterType type) {
Z
zhangjinchao01 已提交
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
    flag = false;
    if (biasParameter_ && biasParameter_->hasType(type)) {
      flag = true;
    }
    if (!flag) {
      for (auto& para : parameters_) {
        if (para && para->hasType(type)) {
          flag = true;
          break;
        }
      }
    }
    if (!flag) {
      for (auto& layer : inputLayers_) {
        if ((layer.get()->*flagQueryFunc)()) {
          flag = true;
        }
      }
    }
  };
  initFlag(needGradient_, &Layer::needGradient, PARAMETER_GRADIENT);
}

void Layer::showOutputStats() {
  MatrixPtr out = getOutputValue();
  if (!out) return;
  if (!out->getElementCnt()) {
    LOG(INFO) << "The number of output of " << config_.name()
              << " is 0, skip to show the statistics";
    return;
  }
297 298
  MatrixPtr outSquare;
  if (dynamic_cast<GpuSparseMatrix*>(out.get())) {
299 300 301 302 303 304
    GpuSparseMatrix* tmp = dynamic_cast<GpuSparseMatrix*>(out.get());
    outSquare = std::make_shared<CpuSparseMatrix>(tmp->getHeight(),
                                                  tmp->getWidth(),
                                                  tmp->getElementCnt(),
                                                  tmp->getValueType(),
                                                  tmp->getFormat());
305 306 307 308 309 310 311 312 313
  } else {
    outSquare = out->clone();
  }
  outSquare->copyFrom(*out, HPPL_STREAM_DEFAULT);
  hl_stream_synchronize(HPPL_STREAM_DEFAULT);

  real mean = outSquare->getSum() / out->getElementCnt();
  real min;
  real max;
Z
zhangjinchao01 已提交
314 315
  if (dynamic_cast<CpuSparseMatrix*>(outSquare.get())) {
    auto tmpMat = dynamic_cast<CpuSparseMatrix*>(outSquare.get());
316 317
    min = tmpMat->getMin();
    max = tmpMat->getMax();
H
hedaoyuan 已提交
318
    tmpMat->square2();
Z
zhangjinchao01 已提交
319 320
    LOG(INFO) << "show statistics of [none zero values] in sparse matrix";
  } else {
321 322
    min = outSquare->getMin();
    max = outSquare->getMax();
H
hedaoyuan 已提交
323
    outSquare->square2();
Z
zhangjinchao01 已提交
324 325 326 327 328
  }
  real std = (outSquare->getSum() / outSquare->getElementCnt()) - mean * mean;
  std = std > 0 ? std : 0;
  LOG(INFO) << "The output state of " << config_.name() << ": mean=" << mean
            << ", "
329
            << "std=" << std << ", "
330 331
            << "min=" << min << ", "
            << "max=" << max;
Z
zhangjinchao01 已提交
332 333 334 335
}

void Layer::forwardActivation() {
  /* activation */
336
  auto status = activation_->forward(output_);
337
  status.check();
Z
zhangjinchao01 已提交
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354

  /* dropout */
  if (config_.drop_rate() > 0) {
    forwardDropOut();
    CHECK_NE(activation_->getName(), "softmax")
        << "Softmax activation cannot be used with Dropout";
  }

  if (FLAGS_show_layer_stat) {
    showOutputStats();
  }
}

void Layer::backwardActivation() {
  /* Do error clipping */
  if (config_.error_clipping_threshold() > 0.0f) {
    if (FLAGS_log_error_clipping) {
L
lianxiaochen 已提交
355 356 357
      VectorPtr outGradVec = Vector::create(
          output_.grad->getData(), output_.grad->getElementCnt(), useGpu_);
      real maxAbsGrad = outGradVec->getAbsMax();
Z
zhangjinchao01 已提交
358
      if (maxAbsGrad > config_.error_clipping_threshold()) {
L
lianxiaochen 已提交
359
        real avgAbsGrad = outGradVec->getAbsSum() / outGradVec->getSize();
Z
zhangjinchao01 已提交
360 361 362 363 364 365 366 367 368 369 370 371 372 373
        LOG(INFO) << " layer=" << config_.name() << " need clipping,"
                  << " max error=" << maxAbsGrad << " avg error=" << avgAbsGrad;
      }
    }
    output_.grad->clip(-config_.error_clipping_threshold(),
                       config_.error_clipping_threshold());
  }

  /* Do dropout for delta*/
  if (config_.drop_rate() > 0 && passType_ != PASS_TEST) {
    MatrixPtr oGrad = getOutputGrad();
    oGrad->dotMul(*oGrad, *dropOutMask_);
  }

374
  auto status = activation_->backward(output_);
375
  status.check();
Z
zhangjinchao01 已提交
376 377 378 379 380
}

void Layer::forwardDropOut() {
  auto& outV = getOutputValue();

381
  if (passType_ == PASS_TRAIN) {
Z
zhangjinchao01 已提交
382
    // new dropOutMask_ if dropOutMask_ is null ptr
383 384 385 386 387
    Matrix::resizeOrCreate(dropOutMask_,
                           outV->getHeight(),
                           outV->getWidth(),
                           false,
                           useGpu(deviceId_));
Z
zhangjinchao01 已提交
388 389 390 391 392 393
    dropOutMask_->randomizeUniform();  // generate a uniform random matrix
    dropOutMask_->biggerThanScalar(config_.drop_rate());  // random mask
    outV->dotMul(*outV, *dropOutMask_);                   // dropout
  } else if (passType_ == PASS_GC) {
    // only initialize once
    if (!dropOutMask_) {
394 395
      dropOutMask_ = Matrix::create(
          outV->getHeight(), outV->getWidth(), false, useGpu(deviceId_));
Z
zhangjinchao01 已提交
396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
      // We use cpu matrix to generate mask so that the mask
      // will be same for both gpu version and cpu version.
      // This will help unittest to make sure they have same result.
      MatrixPtr tmpMask = Matrix::create(outV->getHeight(), outV->getWidth());
      tmpMask->randomizeUniform();  // generate a uniform random matrix
      tmpMask->biggerThanScalar(config_.drop_rate());  // random mask
      dropOutMask_->copyFrom(*tmpMask);
    }
    outV->dotMul(*outV, *dropOutMask_);
  } else {  // passType == PASS_TEST
    outV->mulScalar(1.0 - config_.drop_rate());
  }
}

}  // namespace paddle