image.py 9.0 KB
Newer Older
D
dangqingqing 已提交
1 2 3
import numpy as np
try:
    import cv2
4 5 6 7
except ImportError:
    cv2 = None

from cv2 import resize
8 9 10
import os
import tarfile
import cPickle
D
dangqingqing 已提交
11 12

__all__ = [
13
    "load_image_bytes", "load_image", "resize_short", "to_chw", "center_crop",
14 15
    "random_crop", "left_right_flip", "simple_transform", "load_and_transform",
    "batch_images_from_tar"
D
dangqingqing 已提交
16 17
]
"""
D
dangqingqing 已提交
18
This file contains some common interfaces for image preprocess.
D
dangqingqing 已提交
19
Many users are confused about the image layout. We introduce
D
dangqingqing 已提交
20
the image layout as follows.
D
dangqingqing 已提交
21 22 23

- CHW Layout
  - The abbreviations: C=channel, H=Height, W=Width
D
dangqingqing 已提交
24 25 26
  - The default layout of image opened by cv2 or PIL is HWC.
    PaddlePaddle only supports the CHW layout. And CHW is simply
    a transpose of HWC. It must transpose the input image.
D
dangqingqing 已提交
27 28 29

- Color format: RGB or BGR
  OpenCV use BGR color format. PIL use RGB color format. Both
D
dangqingqing 已提交
30 31
  formats can be used for training. Noted that, the format should
  be keep consistent between the training and inference peroid.
D
dangqingqing 已提交
32 33 34
"""


35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
def batch_images_from_tar(data_file,
                          dataset_name,
                          img2label,
                          num_per_batch=1024):
    """
    Read images from tar file and batch them into batch file.
    param data_file: path of image tar file
    type data_file: string
    param dataset_name: 'train','test' or 'valid'
    type dataset_name: string
    param img2label: a dic with image file name as key 
                    and image's label as value
    type img2label: dic
    param num_per_batch: image number per batch file
    type num_per_batch: int
    return: path of list file containing paths of batch file
    rtype: string
    """
    batch_dir = data_file + "_batch"
    out_path = "%s/%s" % (batch_dir, dataset_name)
    meta_file = "%s/%s.txt" % (batch_dir, dataset_name)

    if os.path.exists(out_path):
        return meta_file
    else:
        os.makedirs(out_path)

    tf = tarfile.open(data_file)
    mems = tf.getmembers()
    data = []
    labels = []
    file_id = 0
    for mem in mems:
        if mem.name in img2label:
            data.append(tf.extractfile(mem).read())
            labels.append(img2label[mem.name])
            if len(data) == num_per_batch:
                output = {}
                output['label'] = labels
                output['data'] = data
                cPickle.dump(
                    output,
                    open('%s/batch_%d' % (out_path, file_id), 'w'),
                    protocol=cPickle.HIGHEST_PROTOCOL)
                file_id += 1
                data = []
                labels = []
    if len(data) > 0:
        output = {}
        output['label'] = labels
        output['data'] = data
        cPickle.dump(
            output,
            open('%s/batch_%d' % (out_path, file_id), 'w'),
            protocol=cPickle.HIGHEST_PROTOCOL)

    with open(meta_file, 'a') as meta:
        for file in os.listdir(out_path):
            meta.write(os.path.abspath("%s/%s" % (out_path, file)) + "\n")
    return meta_file


97 98 99 100 101 102 103 104
def load_image_bytes(bytes, is_color=True):
    """
    Load an color or gray image from bytes array.

    Example usage:
    
    .. code-block:: python
        with open('cat.jpg') as f:
105
            im = load_image_bytes(f.read())
106 107 108 109 110 111 112 113 114 115 116 117 118

    :param bytes: the input image bytes array.
    :type file: str
    :param is_color: If set is_color True, it will load and
                     return a color image. Otherwise, it will
                     load and return a gray image.
    """
    flag = 1 if is_color else 0
    file_bytes = np.asarray(bytearray(bytes), dtype=np.uint8)
    img = cv2.imdecode(file_bytes, flag)
    return img


D
dangqingqing 已提交
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
def load_image(file, is_color=True):
    """
    Load an color or gray image from the file path.

    Example usage:
    
    .. code-block:: python
        im = load_image('cat.jpg')

    :param file: the input image path.
    :type file: string
    :param is_color: If set is_color True, it will load and
                     return a color image. Otherwise, it will
                     load and return a gray image.
    """
D
dangqingqing 已提交
134 135 136 137 138 139 140
    # cv2.IMAGE_COLOR for OpenCV3
    # cv2.CV_LOAD_IMAGE_COLOR for older OpenCV Version
    # cv2.IMAGE_GRAYSCALE for OpenCV3
    # cv2.CV_LOAD_IMAGE_GRAYSCALE for older OpenCV Version
    # Here, use constant 1 and 0
    # 1: COLOR, 0: GRAYSCALE
    flag = 1 if is_color else 0
D
dangqingqing 已提交
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
    im = cv2.imread(file, flag)
    return im


def resize_short(im, size):
    """ 
    Resize an image so that the length of shorter edge is size.

    Example usage:
    
    .. code-block:: python
        im = load_image('cat.jpg')
        im = resize_short(im, 256)
    
    :param im: the input image with HWC layout.
    :type im: ndarray
    :param size: the shorter edge size of image after resizing.
    :type size: int
    """
    assert im.shape[-1] == 1 or im.shape[-1] == 3
    h, w = im.shape[:2]
    h_new, w_new = size, size
    if h > w:
        h_new = size * h / w
    else:
        w_new = size * w / h
167
    im = resize(im, (h_new, w_new), interpolation=cv2.INTER_CUBIC)
D
dangqingqing 已提交
168 169 170 171 172 173
    return im


def to_chw(im, order=(2, 0, 1)):
    """
    Transpose the input image order. The image layout is HWC format
D
dangqingqing 已提交
174 175
    opened by cv2 or PIL. Transpose the input image to CHW layout
    according the order (2,0,1).
D
dangqingqing 已提交
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204

    Example usage:
    
    .. code-block:: python
        im = load_image('cat.jpg')
        im = resize_short(im, 256)
        im = to_chw(im)
    
    :param im: the input image with HWC layout.
    :type im: ndarray
    :param order: the transposed order.
    :type order: tuple|list 
    """
    assert len(im.shape) == len(order)
    im = im.transpose(order)
    return im


def center_crop(im, size, is_color=True):
    """
    Crop the center of image with size.

    Example usage:
    
    .. code-block:: python
        im = center_crop(im, 224)
    
    :param im: the input image with HWC layout.
    :type im: ndarray
D
dangqingqing 已提交
205
    :param size: the cropping size.
D
dangqingqing 已提交
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
    :type size: int
    :param is_color: whether the image is color or not.
    :type is_color: bool
    """
    h, w = im.shape[:2]
    h_start = (h - size) / 2
    w_start = (w - size) / 2
    h_end, w_end = h_start + size, w_start + size
    if is_color:
        im = im[h_start:h_end, w_start:w_end, :]
    else:
        im = im[h_start:h_end, w_start:w_end]
    return im


def random_crop(im, size, is_color=True):
    """
    Randomly crop input image with size.

    Example usage:
    
    .. code-block:: python
        im = random_crop(im, 224)
    
    :param im: the input image with HWC layout.
    :type im: ndarray
D
dangqingqing 已提交
232
    :param size: the cropping size.
D
dangqingqing 已提交
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
    :type size: int
    :param is_color: whether the image is color or not.
    :type is_color: bool
    """
    h, w = im.shape[:2]
    h_start = np.random.randint(0, h - size + 1)
    w_start = np.random.randint(0, w - size + 1)
    h_end, w_end = h_start + size, w_start + size
    if is_color:
        im = im[h_start:h_end, w_start:w_end, :]
    else:
        im = im[h_start:h_end, w_start:w_end]
    return im


def left_right_flip(im):
    """
    Flip an image along the horizontal direction.
    Return the flipped image.

    Example usage:
    
    .. code-block:: python
        im = left_right_flip(im)
    
    :paam im: input image with HWC layout
    :type im: ndarray
    """
    if len(im.shape) == 3:
        return im[:, ::-1, :]
    else:
        return im[:, ::-1, :]


def simple_transform(im, resize_size, crop_size, is_train, is_color=True):
    """
D
dangqingqing 已提交
269
    Simply data argumentation for training. These operations include
D
dangqingqing 已提交
270 271
    resizing, croping and flipping.

D
dangqingqing 已提交
272 273 274 275 276
    Example usage:
    
    .. code-block:: python
        im = simple_transform(im, 256, 224, True)

D
dangqingqing 已提交
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
    :param im: The input image with HWC layout.
    :type im: ndarray
    :param resize_size: The shorter edge length of the resized image.
    :type resize_size: int
    :param crop_size: The cropping size.
    :type crop_size: int
    :param is_train: Whether it is training or not.
    :type is_train: bool
    """
    im = resize_short(im, resize_size)
    if is_train:
        im = random_crop(im, crop_size)
        if np.random.randint(2) == 0:
            im = left_right_flip(im)
    else:
        im = center_crop(im, crop_size)
    im = to_chw(im)

    return im


def load_and_transform(filename,
                       resize_size,
                       crop_size,
                       is_train,
                       is_color=True):
    """
    Load image from the input file `filename` and transform image for
D
dangqingqing 已提交
305 306
    data argumentation. Please refer to the `simple_transform` interface
    for the transform operations.
D
dangqingqing 已提交
307

D
dangqingqing 已提交
308 309 310 311 312
    Example usage:
    
    .. code-block:: python
        im = load_and_transform('cat.jpg', 256, 224, True)

D
dangqingqing 已提交
313 314 315 316 317 318 319 320 321 322 323 324
    :param filename: The file name of input image.
    :type filename: string
    :param resize_size: The shorter edge length of the resized image.
    :type resize_size: int
    :param crop_size: The cropping size.
    :type crop_size: int
    :param is_train: Whether it is training or not.
    :type is_train: bool
    """
    im = load_image(filename)
    im = simple_transform(im, resize_size, crop_size, is_train, is_color)
    return im