operator.h 23.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

D
dongzhihong 已提交
17
#include <algorithm>
18
#include <atomic>
L
luotao1 已提交
19
#include <memory>
20
#include <mutex>  // NOLINT
Q
Qiao Longfei 已提交
21
#include <string>
D
dzhwinter 已提交
22
#include <tuple>
Q
Qiao Longfei 已提交
23
#include <unordered_map>
L
luotao1 已提交
24
#include <utility>
Q
Qiao Longfei 已提交
25 26
#include <vector>

Y
Yu Yang 已提交
27
#include "glog/logging.h"  // For VLOG
Y
Yi Wang 已提交
28 29 30 31 32
#include "paddle/fluid/framework/attribute.h"
#include "paddle/fluid/framework/block_desc.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_info.h"
#include "paddle/fluid/framework/op_kernel_type.h"
33
#include "paddle/fluid/framework/phi_utils.h"
Y
Yi Wang 已提交
34
#include "paddle/fluid/framework/scope.h"
35
#include "paddle/fluid/framework/selected_rows_utils.h"
Y
Yi Wang 已提交
36
#include "paddle/fluid/framework/tensor.h"
37
#include "paddle/fluid/framework/unused_var_check.h"
38
#include "paddle/fluid/memory/malloc.h"
Y
Yi Wang 已提交
39 40
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/variant.h"
C
chentianyu03 已提交
41
#include "paddle/utils/flat_hash_map.h"
Q
Qiao Longfei 已提交
42

43
#include "paddle/fluid/framework/convert_utils.h"
44 45 46 47
#include "paddle/phi/core/compat/arg_map_context.h"
#include "paddle/phi/core/compat/op_utils.h"
#include "paddle/phi/core/kernel_context.h"
#include "paddle/phi/core/kernel_factory.h"
48

W
wanghuancoder 已提交
49 50 51 52 53 54 55 56 57
namespace paddle {
namespace framework {
class InferShapeContext;
class OpInfo;
class Scope;
class Variable;
}  // namespace framework
}  // namespace paddle

Q
Qiao Longfei 已提交
58 59
DECLARE_int32(inner_op_parallelism);

Q
Qiao Longfei 已提交
60 61 62
namespace paddle {
namespace framework {

63
/// If a variable is a empty variable, that name will be used.
64
constexpr char kEmptyVarName[] = "@EMPTY@";
65 66 67

/// If a variable is a temporary variable, that name will be set in Python,
/// but it will be convert to a unique name in scope after OpCreator.
68
constexpr char kTempVarName[] = "@TEMP@";
69 70

/// If a variable's name has a certain suffix, it means that the
T
tianshuo78520a 已提交
71 72
/// variable is the gradient of another variable.
/// e.g. Variable "x@GRAD" is the gradient of variable "x".
73
constexpr char kGradVarSuffix[] = "@GRAD";
74

M
minqiyang 已提交
75 76
constexpr size_t kGradVarSuffixSize = 5U;

77
/// Variables with this suffix are supposed to be filled up with zeros.
78
constexpr char kZeroVarSuffix[] = "@ZERO";
79

C
chengduo 已提交
80 81 82
/// Variables with this suffix are the new Gradient.
constexpr char kNewGradSuffix[] = "@NEWGRAD@";

L
luotao1 已提交
83 84 85 86 87 88 89 90
/// RuntimeContext is used to relate input/output names of Operator with
/// the corresponding variables in name scope.
/// If an Op has attribute kEnableCacheRuntimeContext, it means that in a same
/// name scope, since the input/output names of this Op do not change in the
/// execution, RuntimeContext could be created only at the first iteration of
/// this Op's execution to save the elapsed time.
constexpr char kEnableCacheRuntimeContext[] = "@ENABLE_CACHE_RUNTIME_CONTEXT@";

L
luotao1 已提交
91 92 93 94 95 96 97 98 99
/// If an Op has this attribute, all its kernels should calculate output
/// variable's shape in the corresponding Compute() function. And
/// OperatorWithKernel::RunImpl() would skip call this Op's InferShape()
/// function in its runtime for speedup.
/// TODO(luotao): Note that this temporal attribute would be deleted after all
/// ops contain it.
constexpr char kAllKernelsMustComputeRuntimeShape[] =
    "@ALL_KERNELS_MUST_COMPUTE_RUNTIME_SHAPE@";

D
dzhwinter 已提交
100
// define some kernel priority
101
/* Define multiple kernel type fallback order*/
D
dzhwinter 已提交
102 103
extern std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority;

104
inline std::string GradVarName(const std::string& var_name) {
M
minqiyang 已提交
105 106 107 108 109
  std::string result;
  result.reserve(var_name.size() + kGradVarSuffixSize);
  result += var_name;
  result += kGradVarSuffix;
  return result;
110 111
}

M
minqiyang 已提交
112
inline std::string GradOriginalVarName(const std::string& grad_var_name) {
M
minqiyang 已提交
113
  std::size_t pos = grad_var_name.rfind(kGradVarSuffix);
114 115 116 117 118
  if (pos == std::string::npos) {
    return grad_var_name;
  } else {
    return grad_var_name.substr(0, pos);
  }
119 120
}

121
inline bool VarIsTensor(const Variable& var) {
122
  return var.IsType<LoDTensor>() || var.IsType<phi::SelectedRows>();
123 124
}

C
chengduo 已提交
125 126
const Tensor* GetLoDTensorOrSelectedRowsValueFromVar(const Variable& var);
Tensor* GetMutableLoDTensorOrSelectedRowsValueFromVar(Variable* var);
Q
qiaolongfei 已提交
127

128
class ExecutionContext;
W
wanghuancoder 已提交
129
class OperatorBase;
130

X
Xin Pan 已提交
131 132
class RuntimeContext {
 public:
X
Xin Pan 已提交
133 134
  RuntimeContext(const VariableNameMap& innames,
                 const VariableNameMap& outnames, const Scope& scope);
X
Xin Pan 已提交
135

X
Xin Pan 已提交
136 137 138 139
  RuntimeContext(const VariableValueMap& invars,
                 const VariableValueMap& outvars)
      : inputs(invars), outputs(outvars) {}

X
Xin Pan 已提交
140 141 142 143
  VariableValueMap inputs;
  VariableValueMap outputs;
};

Q
Qiao Longfei 已提交
144
/**
X
Xin Pan 已提交
145
 * OperatorBase has the basic elements that Net will call to do computation.
Q
Qiao Longfei 已提交
146 147 148 149 150 151
 * Only CreateOperator from OpRegistry will new Operator directly. User
 * should always construct a proto message OpDesc and call
 * OpRegistry::CreateOp(op_desc) to get an Operator instance.
 */
class OperatorBase {
 public:
Y
Yu Yang 已提交
152 153
  OperatorBase(const std::string& type, const VariableNameMap& inputs,
               const VariableNameMap& outputs, const AttributeMap& attrs);
154

Q
Qiao Longfei 已提交
155 156
  virtual ~OperatorBase() {}

157
  /// Executor will call this interface function to Run an op.
158 159
  //  The implementation should be written at RunImpl
  void Run(const Scope& scope, const platform::Place& place);
Y
Yu Yang 已提交
160

T
typhoonzero 已提交
161 162 163
  // FIXME(typhoonzero): this is only used for recv_op to stop event_loop.
  virtual void Stop() {}

164
  /// if scope is not null, also show dimensions of arguments
165
  virtual std::string DebugStringEx(const ScopeBase* scope) const;
166
  std::string DebugString() const { return DebugStringEx(nullptr); }
Y
Yu Yang 已提交
167

168
  virtual bool SupportGPU() const { return false; }
B
Baibaifan 已提交
169
  virtual bool SupportNPU() const { return false; }
F
fwenguang 已提交
170
  virtual bool SupportMLU() const { return false; }
171

172 173
  const std::string& Type() const { return type_; }

M
Michal Gallus 已提交
174
  bool HasAttr(const std::string& name) const { return attrs_.count(name); }
175 176
  template <typename T>
  inline const T& Attr(const std::string& name) const {
177 178 179
    PADDLE_ENFORCE_NE(
        attrs_.find(name), attrs_.end(),
        platform::errors::NotFound("(%s) is not found in AttributeMap.", name));
180
    return BOOST_GET_CONST(T, attrs_.at(name));
181
  }
182 183 184 185 186 187 188 189
  void SetAttr(const std::string& name, const Attribute& v) {
    PADDLE_ENFORCE_EQ(
        HasAttr(name), true,
        platform::errors::NotFound(
            "The attribute %s is not found in operator %s", name, Type()));

    attrs_[name] = v;
  }
190
  const AttributeMap& Attrs() const { return attrs_; }
D
dongzhihong 已提交
191

Y
Yu Yang 已提交
192 193
  const VariableNameMap& Inputs() const { return inputs_; }
  const VariableNameMap& Outputs() const { return outputs_; }
194

S
sneaxiy 已提交
195
  const OpInfo& Info() const {
196 197 198
    PADDLE_ENFORCE_NOT_NULL(
        info_, platform::errors::NotFound(
                   "OpInfo of operator (%s) is not found.", type_));
S
sneaxiy 已提交
199 200 201
    return *info_;
  }

202
  bool HasInputs(const std::string& name) const;
Y
Yu Yang 已提交
203
  //! Get a input with argument's name described in `op_proto`
204
  std::string Input(const std::string& name) const;
Y
Yu Yang 已提交
205
  //! Get a input which has multiple variables.
Y
Yu Yang 已提交
206
  const std::vector<std::string>& Inputs(const std::string& name) const;
207
  //! Get all inputs variable names
Q
qijun 已提交
208 209
  std::vector<std::string> InputVars() const;

210
  bool HasOutputs(const std::string& name) const;
Y
Yu Yang 已提交
211
  //! Get a output with argument's name described in `op_proto`
212
  std::string Output(const std::string& name) const;
Y
Yu Yang 已提交
213 214
  //! Get an output which has multiple variables.
  //! TODO add a vector_view to prevent memory copy.
Y
Yu Yang 已提交
215
  const std::vector<std::string>& Outputs(const std::string& name) const;
216
  //! Get all outputs variable names
Y
Yu Yang 已提交
217
  virtual std::vector<std::string> OutputVars(bool has_intermediate) const;
218

219
  void SetIsCalledByExecutor(bool x) { run_by_executor_ = x; }
220

B
baojun-nervana 已提交
221
  virtual void RuntimeInferShape(const Scope& scope,
X
Xin Pan 已提交
222 223
                                 const platform::Place& place,
                                 const RuntimeContext& ctx) const {}
224

Z
Zhang Ting 已提交
225 226 227 228 229
  virtual platform::Place GetExecutionPlace(
      const platform::Place& place) const {
    return place;
  }

Q
qiaolongfei 已提交
230
 protected:
Q
Qiao Longfei 已提交
231
  std::string type_;
D
dongzhihong 已提交
232
  // NOTE: in case of OpGrad, inputs_ contains:
233
  // I (Inputs)
D
dongzhihong 已提交
234 235
  // O (Outputs)
  // OG (Output Gradients)
Y
Yu Yang 已提交
236
  VariableNameMap inputs_;
Y
Yu Yang 已提交
237

D
dongzhihong 已提交
238 239
  // NOTE: in case of OpGrad, outputs_ contains
  // IG (Inputs Gradients)
Y
Yu Yang 已提交
240
  VariableNameMap outputs_;
Q
Qiao Longfei 已提交
241
  AttributeMap attrs_;
S
sneaxiy 已提交
242 243 244 245

  // OpInfo
  const OpInfo* info_;

246 247
  // Whether this operator executes in an Executor.
  bool run_by_executor_{true};
248 249 250 251

 private:
  void GenerateTemporaryNames();
  void CheckAllInputOutputSet() const;
252 253
  virtual void RunImpl(const Scope& scope,
                       const platform::Place& place) const = 0;
Y
Yan Chunwei 已提交
254 255
};

256
class ExecutionContext {
Y
Yan Chunwei 已提交
257
 public:
258
  ExecutionContext(const OperatorBase& op, const Scope& scope,
X
Xin Pan 已提交
259
                   const platform::DeviceContext& device_context,
260 261
                   const RuntimeContext& ctx)
      : op_(op), scope_(scope), device_context_(device_context), ctx_(ctx) {}
H
hong 已提交
262
  virtual ~ExecutionContext() {}
263

H
hong 已提交
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
  virtual std::string InputName(const std::string& name) const {
    return op_.Input(name);
  }
  virtual std::vector<std::string> InputNames(const std::string& name) const {
    return op_.Inputs(name);
  }
  virtual std::string OutputName(const std::string& name) const {
    return op_.Output(name);
  }

  virtual std::vector<std::string> OutputNames(const std::string& name) const {
    return op_.Outputs(name);
  }

  virtual bool HasAttr(const std::string& name) const {
    return op_.HasAttr(name);
  }
  virtual const AttributeMap& Attrs() const { return op_.Attrs(); }

  const std::string& Type() const { return op_.Type(); }
Q
qiaolongfei 已提交
284 285 286

  const Scope& scope() const { return scope_; }

Q
qiaolongfei 已提交
287
  template <typename T>
Y
Yu Yang 已提交
288
  inline const T& Attr(const std::string& name) const {
289
    return BOOST_GET_CONST(T, GetAttr(name));
Q
qiaolongfei 已提交
290 291
  }

H
hong 已提交
292 293 294
  virtual const Attribute& GetAttr(const std::string& name) const {
    return op_.Attrs().at(name);
  }
295

H
hong 已提交
296
  virtual bool HasInput(const std::string& name) const;
297

298 299
  virtual bool HasInputs(const std::string& name) const;

H
hong 已提交
300
  virtual bool HasOutput(const std::string& name) const;
301

H
hong 已提交
302
  virtual size_t InputSize(const std::string& name) const {
Y
Yu Yang 已提交
303
    return op_.Inputs(name).size();
Y
Yan Chunwei 已提交
304 305
  }

H
hong 已提交
306
  virtual size_t OutputSize(const std::string& name) const {
Y
Yu Yang 已提交
307
    return op_.Outputs(name).size();
Y
Yan Chunwei 已提交
308 309
  }

H
hong 已提交
310
  virtual const Variable* InputVar(const std::string& name) const;
Y
Yan Chunwei 已提交
311

H
hong 已提交
312
  virtual Variable* OutputVar(const std::string& name) const;
Y
Yan Chunwei 已提交
313

H
hong 已提交
314
  virtual const std::vector<Variable*> MultiInputVar(
315
      const std::string& name) const {
316 317
    LogVarUsageIfUnusedVarCheckEnabled(name);

X
Xin Pan 已提交
318 319 320 321
    auto it = ctx_.inputs.find(name);
    if (it == ctx_.inputs.end()) {
      return {};
    }
G
Gabor Buella 已提交
322
    return {it->second.begin(), it->second.end()};
X
Xin Pan 已提交
323 324
  }

H
hong 已提交
325
  virtual std::vector<Variable*> MultiOutputVar(const std::string& name) const {
X
Xin Pan 已提交
326 327 328 329 330 331 332
    auto it = ctx_.outputs.find(name);
    if (it == ctx_.outputs.end()) {
      return {};
    }
    return it->second;
  }

H
hong 已提交
333 334 335 336 337 338 339 340 341 342 343
  virtual std::vector<std::string> InNameList() const {
    std::vector<std::string> vec_temp;
    vec_temp.reserve(ctx_.inputs.size());

    for (auto& input : ctx_.inputs) {
      vec_temp.push_back(input.first);
    }

    return vec_temp;
  }

344 345
  template <typename T>
  const T* Input(const std::string& name) const {
Y
Yu Yang 已提交
346
    auto* var = InputVar(name);
347
    return var == nullptr ? nullptr : &var->Get<T>();
348 349 350 351
  }

  template <typename T>
  T* Output(const std::string& name) const {
352
    auto var = OutputVar(name);
353
    return var == nullptr ? nullptr : var->GetMutable<T>();
354 355 356 357
  }

  template <typename T>
  const std::vector<const T*> MultiInput(const std::string& name) const {
358 359
    LogVarUsageIfUnusedVarCheckEnabled(name);

H
hong 已提交
360 361
    auto vars = MultiInputVar(name);
    if (vars.size() == 0) {
X
Xin Pan 已提交
362 363 364 365 366
      return {};
    }
    std::vector<const T*> res;
    res.reserve(vars.size());
    std::transform(vars.begin(), vars.end(), std::back_inserter(res),
H
hong 已提交
367
                   [&](const Variable* var) -> const T* {
X
Xin Pan 已提交
368 369 370 371 372 373 374
                     return var == nullptr ? nullptr : &var->Get<T>();
                   });
    return res;
  }

  template <typename T>
  std::vector<T*> MultiOutput(const std::string& name) const {
H
hong 已提交
375 376 377
    auto vars = MultiOutputVar(name);

    if (vars.size() == 0) {
X
Xin Pan 已提交
378 379
      return {};
    }
H
hong 已提交
380

X
Xin Pan 已提交
381 382 383 384 385 386
    std::vector<T*> res;
    res.reserve(vars.size());
    std::transform(vars.begin(), vars.end(), std::back_inserter(res),
                   [&](Variable* var) -> T* {
                     return var == nullptr ? nullptr : var->GetMutable<T>();
                   });
H
hong 已提交
387

X
Xin Pan 已提交
388 389 390
    return res;
  }

391
  platform::Place GetPlace() const { return device_context_.GetPlace(); }
Q
qijun 已提交
392

Q
QI JUN 已提交
393 394 395 396 397
  template <typename DeviceContextType>
  const DeviceContextType& device_context() const {
    return *reinterpret_cast<const DeviceContextType*>(&device_context_);
  }

398
  const platform::DeviceContext& device_context() const {
Q
qijun 已提交
399
    return device_context_;
Q
qijun 已提交
400
  }
Q
qijun 已提交
401

402
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
Q
QI JUN 已提交
403
  const inline platform::CUDADeviceContext& cuda_device_context() const {
404 405 406
    PADDLE_ENFORCE_EQ(platform::is_gpu_place(device_context_.GetPlace()), true,
                      platform::errors::PreconditionNotMet(
                          "Current device context place is not GPUPlace."));
Q
QI JUN 已提交
407 408 409 410 411
    return *reinterpret_cast<const platform::CUDADeviceContext*>(
        &device_context_);
  }
#endif

X
Xin Pan 已提交
412 413 414
  template <typename T, typename DevContext>
  Tensor AllocateTmpTensor(const framework::DDim& dim,
                           const DevContext& dev_ctx) const {
415
    auto tmp_allocation_ptr = memory::Alloc(dev_ctx, product(dim) * sizeof(T));
X
Xin Pan 已提交
416 417
    auto& deleter = tmp_allocation_ptr.get_deleter();
    auto* allocation_ptr = tmp_allocation_ptr.release();
418
    auto shared_allocation =
419
        std::shared_ptr<phi::Allocation>(allocation_ptr, deleter);
X
Xin Pan 已提交
420

421
    PADDLE_ENFORCE_GE(
422
        allocation_ptr->size(), phi::product(dim) * sizeof(T),
423 424 425
        platform::errors::PreconditionNotMet(
            "The data memory size(%d) is less than the tensor needed memory "
            "size(%d).",
426
            allocation_ptr->size(), phi::product(dim) * sizeof(T)));
X
Xin Pan 已提交
427

428
    paddle::framework::Tensor temp_tensor(framework::TransToPhiDataType(
429
        framework::ToDataType(std::type_index(typeid(T)))));
X
Xin Pan 已提交
430 431 432 433 434
    temp_tensor.Resize(dim);
    temp_tensor.ResetHolder(std::move(shared_allocation));
    return temp_tensor;
  }

H
hong 已提交
435 436 437
  const RuntimeContext Context() const { return ctx_; }

  std::string DebugString() const { return op_.DebugString(); }
438
  const OperatorBase& GetOp() const { return op_; }
H
hong 已提交
439

440
 private:
441 442
  const OperatorBase& op_;
  const Scope& scope_;
443
  const platform::DeviceContext& device_context_;
X
Xin Pan 已提交
444
  const RuntimeContext& ctx_;
Q
Qiao Longfei 已提交
445 446
};

447
// TODO(chenweihang): split impl based OpProto or Dygraph if needed
448
class ExecutionArgumentMappingContext : public phi::ArgumentMappingContext {
449 450 451 452 453
 public:
  explicit ExecutionArgumentMappingContext(const ExecutionContext& ctx)
      : ctx_(ctx) {}

  bool HasInput(const std::string& name) const override {
454
    return ctx_.HasInputs(name);
455 456 457 458 459 460
  }

  bool HasOutput(const std::string& name) const override {
    return ctx_.HasOutput(name);
  }

461 462 463 464
  bool HasAttr(const std::string& name) const override {
    return ctx_.HasAttr(name);
  }

465 466 467
  paddle::any Attr(const std::string& name) const override {
    auto& attr = ctx_.GetAttr(name);
    return GetAttrValue(attr);
468 469 470
  }

  size_t InputSize(const std::string& name) const override {
471
    return ctx_.MultiInputVar(name).size();
472 473 474
  }

  size_t OutputSize(const std::string& name) const override {
475
    return ctx_.MultiOutputVar(name).size();
476 477 478
  }

  bool IsDenseTensorInput(const std::string& name) const override {
479 480 481 482
    auto vars = ctx_.MultiInputVar(name);
    return std::all_of(vars.begin(), vars.end(), [](const Variable* var) {
      return var->IsType<phi::DenseTensor>();
    });
483 484 485
  }

  bool IsSelectedRowsInput(const std::string& name) const override {
486 487 488 489
    auto vars = ctx_.MultiInputVar(name);
    return std::all_of(vars.begin(), vars.end(), [](const Variable* var) {
      return var->IsType<phi::SelectedRows>();
    });
490 491
  }

492
  bool IsDenseTensorVectorInput(const std::string& name) const override {
493 494 495 496
    auto vars = ctx_.MultiInputVar(name);
    return std::all_of(vars.begin(), vars.end(), [](const Variable* var) {
      return var->IsType<framework::LoDTensorArray>();
    });
497 498
  }

499
  bool IsDenseTensorOutput(const std::string& name) const override {
500 501 502 503
    auto vars = ctx_.MultiOutputVar(name);
    return std::all_of(vars.begin(), vars.end(), [](const Variable* var) {
      return var->IsType<phi::DenseTensor>();
    });
504 505 506
  }

  bool IsSelectedRowsOutput(const std::string& name) const override {
507 508 509 510
    auto vars = ctx_.MultiOutputVar(name);
    return std::all_of(vars.begin(), vars.end(), [](const Variable* var) {
      return var->IsType<phi::SelectedRows>();
    });
511 512
  }

513 514
  bool IsForInferShape() const override { return false; }

515 516 517 518
 private:
  const ExecutionContext& ctx_;
};

519 520 521 522 523 524 525 526
template <>
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
    const std::string& name) const;

template <>
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
    const std::string& name) const;

Y
Yu Yang 已提交
527
class OpKernelBase {
Q
qijun 已提交
528
 public:
Q
qijun 已提交
529
  /**
530
   * ExecutionContext is the only parameter of Kernel Run function.
Q
qijun 已提交
531 532
   * Run will get input/output variables, state such as momentum and
   * device resource such as CUDA stream, cublas handle, etc. from
533
   * ExecutionContext. User should construct it before run the Operator.
Q
qijun 已提交
534 535
   */

536
  virtual void Compute(const ExecutionContext& context) const = 0;
Y
Yu Yang 已提交
537

Y
Yu Yang 已提交
538 539 540 541 542 543 544
  virtual ~OpKernelBase() = default;
};

template <typename T>
class OpKernel : public OpKernelBase {
 public:
  using ELEMENT_TYPE = T;
Y
Yu Yang 已提交
545 546
};

Y
Yu Yang 已提交
547 548
class OperatorWithKernel : public OperatorBase {
 public:
Y
yuyang18 已提交
549
  using OpKernelFunc = std::function<void(const ExecutionContext&)>;
Y
Yu Yang 已提交
550
  using OpKernelMap =
Y
yuyang18 已提交
551
      std::unordered_map<OpKernelType, OpKernelFunc, OpKernelType::Hash>;
Q
Qiao Longfei 已提交
552

Y
Yu Yang 已提交
553 554
  OperatorWithKernel(const std::string& type, const VariableNameMap& inputs,
                     const VariableNameMap& outputs, const AttributeMap& attrs)
Y
Yu Yang 已提交
555 556
      : OperatorBase(type, inputs, outputs, attrs) {}

C
chentianyu03 已提交
557
  static paddle::flat_hash_map<std::string /* op_type */, OpKernelMap>&
Y
Yu Yang 已提交
558
  AllOpKernels() {
C
chentianyu03 已提交
559
    static paddle::flat_hash_map<std::string, OpKernelMap> g_all_op_kernels;
Y
Yu Yang 已提交
560
    return g_all_op_kernels;
Y
Yu Yang 已提交
561
  }
Y
Yan Chunwei 已提交
562

563 564 565
  bool SupportGPU() const override;

  bool SupportNPU() const override;
566

F
fwenguang 已提交
567
  bool SupportMLU() const override {
568
    // TODO(zhiqiu): support phi if needed?
F
fwenguang 已提交
569 570 571 572 573 574
    auto& op_kernels = OperatorWithKernel::AllOpKernels().at(type_);
    return std::any_of(op_kernels.begin(), op_kernels.end(),
                       [](OpKernelMap::const_reference kern_pair) {
                         return platform::is_mlu_place(kern_pair.first.place_);
                       });
  }
575
  bool SupportsMKLDNN(proto::VarType::Type data_type) const;
576

577 578
  bool CanMKLDNNBeUsed(const framework::ExecutionContext& ctx,
                       proto::VarType::Type data_type) const;
579

580
  virtual void InferShape(InferShapeContext* ctx) const;
Y
Yu Yang 已提交
581

X
Xin Pan 已提交
582 583
  void RuntimeInferShape(const Scope& scope, const platform::Place& place,
                         const RuntimeContext& ctx) const override;
B
baojun-nervana 已提交
584

585 586 587
  proto::VarType::Type IndicateVarDataType(const ExecutionContext& ctx,
                                           const std::string& name) const;

588 589 590 591
  proto::VarType::Type IndicateOrPromoteVarDataTypes(
      const ExecutionContext& ctx, const std::string& name1,
      const std::string& name2) const;

592
  virtual OpKernelType GetExpectedKernelType(const ExecutionContext& ctx) const;
X
Xin Pan 已提交
593

594 595
  // change this to public so that in dygraph mode we can call it to check if we
  // need transform data
596 597 598
  virtual OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const Tensor& tensor,
      const OpKernelType& expected_kernel_type) const;
Y
Yu Yang 已提交
599

600 601
  platform::Place GetExecutionPlace(
      const platform::Place& platform) const override {
Z
Zhang Ting 已提交
602 603 604
    return kernel_type_->place_;
  }

605
  /* member functions for adapting to phi lib */
606 607 608 609 610
  /** In the Tensor calculation library, the new Kernel adopts a clearer and
    * more streamlined design. The arguments of the Kernel and the input and
    * output arguments registered in the original OpMaker do not match in some
    * cases, so we use map to record the arguments required by the kernel.
    * When selecting Kernel during Op execution, select the arguments of the
611
    * original Op according to the GetExpectedPhiKernelArgs returned arguments.
612
    */
613
  phi::KernelSignature GetExpectedPhiKernelArgs(
614 615
      const ExecutionContext& ctx) const;

616 617
  /* member functions for adapting to phi lib */
  phi::KernelKey ChoosePhiKernel(const ExecutionContext& ctx) const;
618

619
  /**
620
   * Transfer data place for phi kernel
621 622
   * Is this really needed?
   */
623 624 625
  Scope* PreparePhiData(const Scope& scope, const phi::Kernel& pt_kernel,
                        const phi::KernelSignature& pt_kernel_signature,
                        RuntimeContext* ctx) const;
626

627 628 629
  void BuildPhiKernelContext(const RuntimeContext& ctx,
                             platform::DeviceContext* dev_ctx,
                             phi::KernelContext* pt_kernel_context) const;
630

631
  phi::KernelSignature* PhiKernelSignature() const {
632 633 634
    return pt_kernel_signature_.get();
  }

635
  phi::Kernel* PhiKernel() const { return pt_kernel_.get(); }
636

637
  void ResetPhiKernel(phi::Kernel* kernel) const {
638 639 640
    return pt_kernel_.reset(kernel);
  }

641 642
  const OpKernelType* kernel_type() const { return kernel_type_.get(); }

643 644 645 646
  void ResetKernelType(OpKernelType* kernel_type) {
    kernel_type_.reset(kernel_type);
  }

Y
Yu Yang 已提交
647
 private:
648
  void RunImpl(const Scope& scope, const platform::Place& place) const final;
L
luotao1 已提交
649 650
  void RunImpl(const Scope& scope, const platform::Place& place,
               RuntimeContext* runtime_ctx) const;
Y
yuyang18 已提交
651 652

  /**
T
tianshuo78520a 已提交
653 654
   * Transfer data from scope to a transferred scope. If there is no data need
   * to
Y
yuyang18 已提交
655 656 657 658
   * be tranfered, it returns nullptr.
   *
   * * transfered_inplace_vars is a output vector.
   */
X
Xin Pan 已提交
659 660 661 662
  Scope* PrepareData(const Scope& scope,
                     const OpKernelType& expected_kernel_key,
                     std::vector<std::string>* transfered_inplace_vars,
                     RuntimeContext* ctx) const;
Y
yuyang18 已提交
663 664 665 666

  void TransferInplaceVarsBack(const Scope& scope,
                               const std::vector<std::string>& inplace_vars,
                               const Scope& exec_scope) const;
667

668 669 670
  OpKernelType InnerGetExpectedKernelType(const ExecutionContext& ctx) const;

  void ChooseKernel(const ExecutionContext& ctx) const;
L
Liu Yiqun 已提交
671

672 673 674
  void HandleComplexGradToRealGrad(const Scope& scope,
                                   RuntimeContext* ctx) const;

675 676 677 678 679
  /* Inner assist methods */
  // indicate kernel DataType by input data.
  // By default all input data must be same.
  proto::VarType::Type IndicateDataType(const ExecutionContext& ctx) const;
  // used for IndicateDataType
680 681 682
  void ParseInputDataType(const std::vector<Variable*>& vars,
                          const std::string& name,
                          proto::VarType::Type* data_type) const;
683 684 685 686
  // used for IndicateOrPromoteVarDataTypes
  Tensor* GetTensorFormInputSafely(const ExecutionContext& ctx,
                                   const std::string& name) const;

687
 protected:
L
Liu Yiqun 已提交
688 689
  mutable std::unique_ptr<OpKernelType> kernel_type_;
  mutable std::unique_ptr<OpKernelFunc> kernel_func_;
L
luotao1 已提交
690 691
  mutable std::unique_ptr<RuntimeContext> runtime_ctx_;
  mutable const Scope* pre_scope_ = nullptr;
692
  mutable bool need_prepare_data_ = true;
693 694
  mutable bool enable_cache_runtime_context_ = false;
  mutable bool all_kernels_must_compute_runtime_shape_ = false;
695
  mutable std::mutex cache_update_mutex_;
696
  mutable bool enable_cache_transfer_scope_ = false;
697
  // NOTE(chenweihang): Similar op members are used to adapt to
698
  // new phi kernel, if there is a better design in the future,
699
  // we may polish the implementation here
700
  mutable bool run_phi_kernel_ = false;
L
Liu-xiandong 已提交
701
  mutable bool run_kp_kernel = false;
702 703
  mutable std::unique_ptr<phi::KernelSignature> pt_kernel_signature_;
  mutable std::unique_ptr<phi::Kernel> pt_kernel_;
704
  mutable std::unique_ptr<phi::ArgumentMappingFn> arg_map_fn_;
Q
Qiao Longfei 已提交
705 706
};

Y
Yu Yang 已提交
707 708
extern bool OpSupportGPU(const std::string& op_type);

Q
Qiao Longfei 已提交
709 710
}  // namespace framework
}  // namespace paddle