operator.h 10.3 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

D
dongzhihong 已提交
17
#include <algorithm>
Q
Qiao Longfei 已提交
18 19 20 21 22
#include <boost/variant.hpp>
#include <string>
#include <unordered_map>
#include <vector>

Q
qijun 已提交
23 24
#include "paddle/framework/attr_checker.h"
#include "paddle/framework/op_desc.pb.h"
Y
Yan Chunwei 已提交
25
#include "paddle/framework/op_proto.pb.h"
Q
qijun 已提交
26 27 28 29 30
#include "paddle/framework/scope.h"
#include "paddle/framework/tensor.h"
#include "paddle/platform/device_context.h"
#include "paddle/platform/place.h"
#include "paddle/utils/Error.h"
Q
Qiao Longfei 已提交
31 32 33 34

namespace paddle {
namespace framework {

35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
/// If a variable is a empty variable, that name will be used.
const std::string kEmptyVarName = "@EMPTY@";

/// If a variable is a temporary variable, that name will be set in Python,
/// but it will be convert to a unique name in scope after OpCreator.
const std::string kTempVarName = "@TEMP@";

/// If a variable's name has a certain suffix, it means that the
/// variable is the gradient of another varibale.
/// e.g. Variable "x@GRAD" is the gradient of varibale "x".
const std::string kGradVarSuffix = "@GRAD";

/// Variables with this suffix are supposed to be filled up with zeros.
const std::string kZeroVarSuffix =  "@ZERO";

inline std::string GradVarName(const std::string& var_name) {
  return var_name + kGradVarSuffix;
}


Q
Qiao Longfei 已提交
55
class OperatorBase;
56 57
class InferShapeContext;
class ExecutionContext;
58

Q
Qiao Longfei 已提交
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
/**
 * OperatorBase has the basic element that Net will call to do computation.
 * Only CreateOperator from OpRegistry will new Operator directly. User
 * should always construct a proto message OpDesc and call
 * OpRegistry::CreateOp(op_desc) to get an Operator instance.
 */
class OperatorBase {
 public:
  virtual ~OperatorBase() {}

  template <typename T>
  inline const T& GetAttr(const std::string& name) const {
    PADDLE_ENFORCE(attrs_.count(name) != 0, "%s should be in AttributeMap",
                   name);
    return boost::get<T>(attrs_.at(name));
  }

76
  virtual std::string DebugString() const;
Q
Qiao Longfei 已提交
77

Q
Qiao Longfei 已提交
78 79 80 81
  /// Init will be called after CreateOperator, you can put some initialization
  /// logic here.
  virtual void Init() {}

Q
Qiao Longfei 已提交
82 83
  /// InferShape infer the size of Variables used by this Operator with
  /// information inside scope
Y
Yu Yang 已提交
84
  virtual void InferShape(const Scope& scope) const = 0;
Q
Qiao Longfei 已提交
85 86

  /// Net will call this function to Run an op.
Y
Yu Yang 已提交
87
  virtual void Run(const Scope& scope,
Y
Yu Yang 已提交
88 89
                   const platform::DeviceContext& dev_ctx) const = 0;

Y
Yu Yang 已提交
90 91
  virtual bool IsNetOp() const { return false; }

D
dongzhihong 已提交
92 93 94
  /// rename inputs outputs name
  void Rename(const std::string& old_name, const std::string& new_name);

Y
Yu Yang 已提交
95
  //! Get a input with argument's name described in `op_proto`
Y
Yan Chunwei 已提交
96
  const std::string& Input(const std::string& name) const;
Y
Yu Yang 已提交
97

Y
Yu Yang 已提交
98 99
  //! Get a input which has multiple variables.
  //! TODO add a vector_view to prevent memory copy.
Y
Yan Chunwei 已提交
100
  std::vector<std::string> Inputs(const std::string& name) const;
Y
Yu Yang 已提交
101
  //! Get a output with argument's name described in `op_proto`
Y
Yan Chunwei 已提交
102
  const std::string& Output(const std::string& name) const;
Y
Yu Yang 已提交
103 104
  //! Get an output which has multiple variables.
  //! TODO add a vector_view to prevent memory copy.
Y
Yan Chunwei 已提交
105 106
  std::vector<std::string> Outputs(const std::string& name) const;

Q
Qiao Longfei 已提交
107
 public:
Q
Qiao Longfei 已提交
108
  std::string type_;
D
dongzhihong 已提交
109 110 111 112
  // NOTE: in case of OpGrad, inputs_ contains:
  // I (Inputs)
  // O (Outputs)
  // OG (Output Gradients)
Q
Qiao Longfei 已提交
113
  std::vector<std::string> inputs_;
D
dongzhihong 已提交
114 115
  // NOTE: in case of OpGrad, outputs_ contains
  // IG (Inputs Gradients)
Q
Qiao Longfei 已提交
116 117
  std::vector<std::string> outputs_;
  AttributeMap attrs_;
Y
Yan Chunwei 已提交
118
  // store the arguments' offset described in op_desc.
Y
Yu Yang 已提交
119
  std::shared_ptr<std::unordered_map<std::string, int>> in_out_idxs_;
Y
Yan Chunwei 已提交
120 121
};

122
class OperatorContext {
Y
Yan Chunwei 已提交
123
 public:
124
  OperatorContext(const OperatorBase* op, const Scope& scope)
125 126 127
      : op_(*op), scope_(scope) {}

  size_t InputSize() const { return op_.inputs_.size(); }
Y
Yan Chunwei 已提交
128

129 130
  size_t OutputSize() const { return op_.outputs_.size(); }

131
  const Variable* InputVar(const size_t index) const {
132
    return scope_.FindVar(op_.inputs_.at(index));
Y
Yan Chunwei 已提交
133 134
  }

135
  Variable* OutputVar(const size_t index) const {
136
    return scope_.FindVar(op_.outputs_.at(index));
Y
Yan Chunwei 已提交
137 138
  }

139
  const Variable* InputVar(const std::string& name) const {
Y
Yu Yang 已提交
140
    return scope_.FindVar(op_.Input(name));
Y
Yan Chunwei 已提交
141 142
  }

143
  Variable* OutputVar(const std::string& name) const {
Y
Yu Yang 已提交
144
    return scope_.FindVar(op_.Output(name));
Y
Yan Chunwei 已提交
145 146
  }

147 148
  const std::vector<const Variable*> MultiInputVar(
      const std::string& name) const {
Y
Yan Chunwei 已提交
149 150
    auto names = op_.Inputs(name);
    std::vector<const Variable*> res;
151
    res.reserve(names.size());
Y
Yan Chunwei 已提交
152
    std::transform(
153
        names.begin(), names.end(), std::back_inserter(res),
Y
Yu Yang 已提交
154
        [this](const std::string& name) { return scope_.FindVar(name); });
Y
Yan Chunwei 已提交
155 156 157
    return res;
  }

158
  std::vector<const Variable*> MultiOutputVar(const std::string& name) const {
Y
Yan Chunwei 已提交
159 160
    auto names = op_.Outputs(name);
    std::vector<const Variable*> res;
161
    res.reserve(names.size());
Y
Yan Chunwei 已提交
162
    std::transform(
163
        names.begin(), names.end(), std::back_inserter(res),
Y
Yu Yang 已提交
164
        [this](const std::string& name) { return scope_.FindVar(name); });
Y
Yan Chunwei 已提交
165 166 167
    return res;
  }

168
  template <typename T>
169 170 171 172
  const T* Input(const size_t index) const {
    auto var = InputVar(index);
    PADDLE_ENFORCE(var != nullptr, "Input(%d) should not be nullptr", index);
    return &var->Get<T>();
173 174 175
  }

  template <typename T>
176 177 178 179
  T* Output(const size_t index) const {
    auto var = OutputVar(index);
    PADDLE_ENFORCE(var != nullptr, "Output(%d) should not be nullptr", index);
    return var->GetMutable<T>();
180 181 182 183
  }

  template <typename T>
  const T* Input(const std::string& name) const {
184 185 186
    auto var = InputVar(name);
    PADDLE_ENFORCE(var != nullptr, "Input(%s) should not be nullptr", name);
    return &var->Get<T>();
187 188 189 190
  }

  template <typename T>
  T* Output(const std::string& name) const {
191 192 193
    auto var = OutputVar(name);
    PADDLE_ENFORCE(var != nullptr, "Output(%s) should not be nullptr", name);
    return var->GetMutable<T>();
194 195 196 197 198 199 200 201
  }

  template <typename T>
  const std::vector<const T*> MultiInput(const std::string& name) const {
    auto names = op_.Inputs(name);
    std::vector<const T*> res;
    res.reserve(names.size());
    std::transform(names.begin(), names.end(), std::back_inserter(res),
202
                   [&](const std::string& sub_name) {
203
                     auto var = scope_.FindVar(sub_name);
204 205 206 207
                     PADDLE_ENFORCE(var != nullptr,
                                    "MultiInput(%s:%s) should not be nullptr",
                                    name, sub_name);
                     return &var->Get<T>();
208 209 210 211 212 213 214 215 216 217
                   });
    return res;
  }

  template <typename T>
  std::vector<const T*> MultiOutput(const std::string& name) const {
    auto names = op_.Outputs(name);
    std::vector<const T*> res;
    res.reserve(names.size());
    std::transform(names.begin(), names.end(), std::back_inserter(res),
218
                   [&](const std::string& sub_name) {
219
                     auto var = scope_.FindVar(sub_name);
220 221 222 223
                     PADDLE_ENFORCE(var != nullptr,
                                    "MultiOutput(%s:%s) should not be nullptr",
                                    name, sub_name);
                     return var->GetMutable<T>();
224 225 226 227 228
                   });
    return res;
  }

  const OperatorBase& op_;
229
  const Scope& scope_;
230 231 232 233
};

class InferShapeContext : public OperatorContext {
 public:
234
  InferShapeContext(const OperatorBase* op, const Scope& scope)
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
      : OperatorContext(op, scope) {}
};

template <typename T>
struct EigenDeviceConverter;

template <>
struct EigenDeviceConverter<platform::CPUPlace> {
  using EigenDeviceType = Eigen::DefaultDevice;
};

#ifndef PADDLE_ONLY_CPU
template <>
struct EigenDeviceConverter<platform::GPUPlace> {
  using EigenDeviceType = Eigen::GpuDevice;
};
#endif

class ExecutionContext : public OperatorContext {
 public:
255
  ExecutionContext(const OperatorBase* op, const Scope& scope,
256 257 258
                   const platform::DeviceContext& device_context)
      : OperatorContext(op, scope), device_context_(device_context) {}

Q
qijun 已提交
259 260 261
  template <typename PlaceType,
            typename DeviceType =
                typename EigenDeviceConverter<PlaceType>::EigenDeviceType>
262
  DeviceType& GetEigenDevice() const;
Q
qijun 已提交
263 264 265

  platform::Place GetPlace() const { return device_context_.GetPlace(); }

Y
Yan Chunwei 已提交
266
  const platform::DeviceContext& device_context_;
Q
Qiao Longfei 已提交
267 268
};

Q
qijun 已提交
269 270
class OpKernel {
 public:
Q
qijun 已提交
271
  /**
272
   * ExecutionContext is the only parameter of Kernel Run function.
Q
qijun 已提交
273 274
   * Run will get input/output variables, state such as momentum and
   * device resource such as CUDA stream, cublas handle, etc. from
275
   * ExecutionContext. User should construct it before run the Operator.
Q
qijun 已提交
276 277
   */

278
  virtual void Compute(const ExecutionContext& context) const = 0;
Y
Yu Yang 已提交
279 280 281 282

  virtual ~OpKernel() {}
};

Q
Qiao Longfei 已提交
283 284
class OperatorWithKernel : public OperatorBase {
 public:
Y
Yu Yang 已提交
285 286
  struct OpKernelKey {
    platform::Place place_;
Q
Qiao Longfei 已提交
287

Y
Yu Yang 已提交
288 289 290 291 292
    OpKernelKey() = default;
    OpKernelKey(const platform::DeviceContext& dev_ctx) {
      place_ = dev_ctx.GetPlace();
    }

Q
qijun 已提交
293 294 295
    bool operator==(const OpKernelKey& o) const {
      return platform::places_are_same_class(place_, o.place_);
    }
Y
Yu Yang 已提交
296 297 298 299 300 301 302 303 304 305 306
  };

  struct OpKernelHash {
    std::hash<bool> hash_;
    size_t operator()(const OpKernelKey& key) const {
      return hash_(platform::is_gpu_place(key.place_));
    }
  };

  using OpKernelMap =
      std::unordered_map<OpKernelKey, std::unique_ptr<OpKernel>, OpKernelHash>;
Q
Qiao Longfei 已提交
307

308
  void InferShape(const Scope& scope) const {
309 310 311
    InferShape(InferShapeContext(this, scope));
  }

Y
Yu Yang 已提交
312
  void Run(const Scope& scope,
Y
Yu Yang 已提交
313
           const platform::DeviceContext& dev_ctx) const final {
Q
Qiao Longfei 已提交
314
    auto& opKernel = AllOpKernels().at(type_).at(OpKernelKey(dev_ctx));
315
    opKernel->Compute(ExecutionContext(this, scope, dev_ctx));
Q
Qiao Longfei 已提交
316 317
  }

Y
Yu Yang 已提交
318 319 320 321
  static std::unordered_map<std::string /* op_type */, OpKernelMap>&
  AllOpKernels() {
    static std::unordered_map<std::string, OpKernelMap> g_all_op_kernels;
    return g_all_op_kernels;
Y
Yu Yang 已提交
322
  }
Y
Yan Chunwei 已提交
323

Y
Yu Yang 已提交
324
 protected:
325
  virtual void InferShape(const InferShapeContext& ctx) const = 0;
Q
Qiao Longfei 已提交
326 327 328 329
};

}  // namespace framework
}  // namespace paddle