adam_optimizer.cc 1.9 KB
Newer Older
1
#include "adam_optimizer.h"
2
#include <cmath>
3 4 5 6

namespace paddle {
namespace optimizer {

D
dzhwinter 已提交
7
void AdamOptimizer::set_weight(Tensor *p) {
D
dzhwinter 已提交
8
  parameter_ = p;
9
  size_t size = p->size();
D
dzhwinter 已提交
10 11
  momentums_ = new Tensor(size);
  velocitys_ = new Tensor(size);
12 13
}

D
dzhwinter 已提交
14 15 16 17 18
void AdamOptimizer::Update(const Tensor *gradient) {
  num_sample_passed_ += 1;
  double learning_rate = lr_policy_->LearningRate(num_sample_passed_);
  double coef1 = 1.0 - std::pow(beta_1_, num_sample_passed_);
  double coef2 = 1.0 - std::pow(beta_2_, num_sample_passed_);
19
  learning_rate *= std::sqrt(coef2) / coef1;
20 21 22 23 24
  Tensor &param = *parameter_;
  const Tensor &grad = *gradient;
  Tensor &m = *momentums_;
  Tensor &v = *velocitys_;
  for (size_t i = 0; i < param.size(); ++i) {
D
dzhwinter 已提交
25 26
    m[i] = beta_1_ * m[i] + (1.0 - beta_1_) * grad[i];
    v[i] = beta_2_ * v[i] + (1.0 - beta_2_) * grad[i] * grad[i];
27
    param[i] -=
D
dzhwinter 已提交
28
        learning_rate * (m[i] / std::sqrt(v[i] + epsilon_) + decay_ * param[i]);
29 30
  }
}
D
dzhwinter 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58

const char *AdadeltaOptimizer::SerializeState(int *state_len) {
  OptimizerState state;
  state.set_learning_rate(lr_policy_->LearningRate(num_sample_passed_));
  state.set_num_sample_passed(num_sample_passed_);

  TensorToProto(*parameter_, state.mutable_parameter());
  TensorToProto(*velocitys_, state.mutable_momentums());

  state.set_beta_1(beta_1_);
  state.set_beta_2(beta_2_);
  state.set_decay(decay_);
  *state_len += CalStateSize(
      parameter_, momentums_, velocitys_, beta_1_, beta_2, epsilon_ decay_);
  return state.SerializeAsString().c_str();
}

void AdadeltaOptimizer::DeSerializeState(const std::string &str) {
  OptimizerState state;
  state.ParseFromString(str);
  lr_policy_->set(state.learning_rate());
  num_sample_passed_ = state.num_sample_passed();

  ProtoToTensor(state.parameter(), parameter_);
  ProtoToTensor(state.velocitys(), velocitys__);
  beta_1_ = state.beta_1();
  beta_2_ = state.beta_2();
}
59 60
}  // namespace optimizer
}  // namespace paddle