elementwise_op.h 4.6 KB
Newer Older
G
gongweibao 已提交
1 2
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
G
gongweibao 已提交
6

7
    http://www.apache.org/licenses/LICENSE-2.0
G
gongweibao 已提交
8

9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
G
gongweibao 已提交
14 15 16

#pragma once
#include "paddle/framework/op_registry.h"
17
#include "paddle/framework/operator.h"
G
gongweibao 已提交
18 19 20 21 22 23 24 25 26

namespace paddle {
namespace operators {

class ElementwiseOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  using Tensor = framework::Tensor;
27
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
28 29 30 31 32 33 34 35 36
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of elementwise op should not be null");
    PADDLE_ENFORCE(ctx->HasInput("Y"),
                   "Input(Y) of elementwise op should not be null");
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of elementwise op should not be null.");

    auto x_dim = ctx->GetInputDim("X");
    auto y_dim = ctx->GetInputDim("Y");
G
gongweibao 已提交
37
    PADDLE_ENFORCE_GE(x_dim.size(), y_dim.size(),
38
                      "Rank of first input must >= rank of second input.");
Q
Qiao Longfei 已提交
39 40
    ctx->SetOutputDim("Out", x_dim);
    ctx->ShareLoD("X", /*->*/ "Out");
G
gongweibao 已提交
41 42 43 44 45
  }
};

class ElementwiseOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
46
  ElementwiseOpMaker(OpProto* proto, OpAttrChecker* op_checker)
G
gongweibao 已提交
47
      : OpProtoAndCheckerMaker(proto, op_checker) {
K
kexinzhao 已提交
48 49 50
    AddInput("X", "(Tensor) The first input tensor of elementwise op");
    AddInput("Y", "(Tensor) The second input tensor of elementwise op");
    AddOutput("Out", "The output of elementwise op");
G
gongweibao 已提交
51
    AddAttr<int>("axis",
K
kexinzhao 已提交
52 53
                 "(int, default -1) The starting dimension index "
                 "for broadcasting Y onto X")
G
gongweibao 已提交
54 55 56
        .SetDefault(-1)
        .EqualGreaterThan(-1);
    comment_ = R"DOC(
K
kexinzhao 已提交
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
Limited Elementwise {name} Operator.

The equation is:

{equation}

X is a tensor of any dimension and the dimensions of tensor Y must be smaller than
or equal to the dimensions of X. 

There are two cases for this operator:
1. The shape of Y is same with X;
2. The shape of Y is a subset of X.

For case 2:
Y will be broadcasted to match the shape of X and axis should be 
the starting dimension index for broadcasting Y onto X.

example:
  shape(X) = (2, 3, 4, 5), shape(Y) = (,)
  shape(X) = (2, 3, 4, 5), shape(Y) = (5,)
  shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5)
  shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
  shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
G
gongweibao 已提交
80 81

Both the input X and Y can carry the LoD (Level of Details) information,
K
kexinzhao 已提交
82 83
or not. But the output only shares the LoD information with input X.

G
gongweibao 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
)DOC";
    AddComment(comment_);
  }

 protected:
  std::string comment_;

  void Replace(std::string& src, std::string from, std::string to) {
    std::size_t len_from = std::strlen(from.c_str());
    std::size_t len_to = std::strlen(to.c_str());
    for (std::size_t pos = src.find(from); pos != std::string::npos;
         pos = src.find(from, pos + len_to)) {
      src.replace(pos, len_from, to);
    }
  }

  void SetComment(std::string name, std::string equation) {
    Replace(comment_, "{name}", name);
    Replace(comment_, "{equation}", equation);
  }
};

class ElementwiseOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  using Tensor = framework::Tensor;

111
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
112 113 114 115 116 117 118 119
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null");
    PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) should not be null");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) should not be null");

    auto x_dims = ctx->GetInputDim("X");
    auto y_dims = ctx->GetInputDim("Y");
    auto out_dims = ctx->GetInputDim(framework::GradVarName("Out"));
G
gongweibao 已提交
120 121

    PADDLE_ENFORCE_GE(x_dims.size(), y_dims.size(),
122
                      "Rank of first input must >= rank of second input.");
G
gongweibao 已提交
123

Q
Qiao Longfei 已提交
124 125 126 127
    auto x_grad_name = framework::GradVarName("X");
    auto y_grad_name = framework::GradVarName("Y");
    if (ctx->HasOutput(x_grad_name)) {
      ctx->SetOutputDim(x_grad_name, x_dims);
G
gongweibao 已提交
128
    }
Q
Qiao Longfei 已提交
129 130
    if (ctx->HasOutput(y_grad_name)) {
      ctx->SetOutputDim(y_grad_name, y_dims);
G
gongweibao 已提交
131 132 133 134 135
    }
  }
};
}  // namespace operators
}  // namespace paddle