varbase_patch_methods.py 38.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import inspect
16
import numpy as np
17 18
import warnings
import weakref
19
import sys
20 21

import paddle
22
from .. import framework
23
from ..framework import convert_np_dtype_to_dtype_, _in_legacy_dygraph
24
from .. import core
25
from .. import unique_name
C
chentianyu03 已提交
26
from ..framework import Variable, Parameter, ParamBase, _getitem_impl_, _setitem_impl_, EagerParamBase, in_dygraph_mode
27
from .base import switch_to_static_graph
28
from .math_op_patch import monkey_patch_math_varbase
29
from .parallel import scale_loss
L
Leo Chen 已提交
30
from paddle.fluid.data_feeder import convert_dtype, _PADDLE_DTYPE_2_NUMPY_DTYPE
31
import paddle.utils.deprecated as deprecated
C
chenjian 已提交
32
import paddle.profiler as profiler
33
from paddle.profiler.utils import in_profiler_mode
H
hong 已提交
34
from paddle import _C_ops
35

36 37
_grad_scalar = None

38

39 40 41
class TensorHookRemoveHelper(object):
    """
    A helper class that for removing Tensor gradient's hook.
42
    NOTE(wuweilong):the operation weakref.ref(tensor) will cause some unexpected errors in eager mode.
43 44 45
    """

    def __init__(self, tensor, hook_id):
J
Jiabin Yang 已提交
46 47
        self._tensor = tensor if framework._in_eager_mode_ else weakref.ref(
            tensor)
48 49 50 51 52 53 54 55 56
        self._hook_id = hook_id

    def remove(self):
        """
        Remove reference Tensor's hook.

        Returns:
            bool: Return True if removed successfully
        """
J
Jiabin Yang 已提交
57
        tensor = self._tensor if framework._in_eager_mode_ else self._tensor()
58 59 60 61 62 63 64 65 66 67 68
        if tensor is not None:
            res = tensor._remove_grad_hook(self._hook_id)
            if res is True:
                return True
            else:
                warnings.warn(
                    "The backward hook (ID: %d) of Tensor `%s` you want to remove does not exist or has been removed."
                    % (self._hook_id, tensor.name), RuntimeWarning)
        return False


69 70 71
_already_patch_repr = False


72
def monkey_patch_varbase():
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
    @switch_to_static_graph
    def _to_static_var(self, to_parameter=False, **kwargs):
        """
        **Notes**:
            **This API is ONLY available in Dygraph mode**

        Transform a VarBase into static Variable with same attributes. It's a low level interface used
        in dy2static and shall not be called directly.

        Args:
            to_parameter (bool): It takes effect only if the input a VarBase. If set True,
                                 the VarBase will be converted into framework.Parameters. Otherwise, it will
                                 be converted into framework.Variable. Default False.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
                import numpy as np

                data = np.ones([3, 1024], dtype='float32')
                with fluid.dygraph.guard():
                    var_base = to_variable(data)
                    static_var = var_base._to_static_var()

        """
100

101
        # Note: getattr(self, attr, None) will call x.grad=x.gradient(), but gradient() only available in dygraph.
102
        # It will fail. So, for propery that different between dynamic and static graph, should not getattr(self, attr, None).
103
        attr_not_need_keys = ['grad', 'T', 'place', '_place_str']
104
        param_keys = ['stop_gradient', 'trainable']
J
Jiabin Yang 已提交
105
        if isinstance(self, (ParamBase, EagerParamBase)):
106
            attr_kwargs = self.__dict__.copy()
107 108
            for key in param_keys:
                attr_kwargs[key] = getattr(self, key)
109
        else:
110 111
            attr_names = []
            for name in dir(self):
112 113 114 115
                if name not in attr_not_need_keys:
                    if not inspect.ismethod(getattr(
                            self, name)) and not name.startswith('_'):
                        attr_names.append(name)
116 117 118 119 120 121 122 123
            attr_kwargs = {name: getattr(self, name) for name in attr_names}

        attr_keys = ['block', 'shape', 'dtype', 'type', 'name', 'persistable']
        for attr in attr_keys:
            attr_kwargs[attr] = getattr(self, attr, None)

        attr_kwargs.update(kwargs)

J
Jiabin Yang 已提交
124
        if to_parameter or isinstance(self, (ParamBase, EagerParamBase)):
125
            del attr_kwargs['persistable']
126 127
            # NOTE(Aurelius84): All parameters should be placed into global block.
            attr_kwargs['block'] = attr_kwargs['block'].program.global_block()
128 129 130 131 132
            static_var = Parameter(**attr_kwargs)
        else:
            static_var = Variable(**attr_kwargs)
        return static_var

133 134 135 136 137
    # TODO(jiabin): move this to cplusplus end if we find some performance issue on it
    @framework.dygraph_only
    def set_value(self, value):
        """
        **Notes**:
T
tianshuo78520a 已提交
138
            **This API is ONLY available in Dygraph mode**
139 140 141 142 143 144 145 146 147 148 149

        Set a new value for this Variable.

        Args:
            value (Variable|np.ndarray): the new value.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
150
                from paddle.fluid.dygraph import Linear
151 152
                import numpy as np

153
                data = np.ones([3, 1024], dtype='float32')
154
                with fluid.dygraph.guard():
155
                    linear = fluid.dygraph.Linear(1024, 4)
156
                    t = to_variable(data)
157
                    linear(t)  # call with default weight
158
                    custom_weight = np.random.randn(1024, 4).astype("float32")
159 160
                    linear.weight.set_value(custom_weight)  # change existing weight
                    out = linear(t)  # call with different weight
161 162

        """
J
Jiabin Yang 已提交
163
        if framework._in_eager_mode_:
164
            base_tensor = core.eager.Tensor
165 166 167
        else:
            base_tensor = core.VarBase
        assert isinstance(value, (np.ndarray, base_tensor, dict, str)), \
S
Steffy-zxf 已提交
168 169 170 171 172 173 174 175 176 177 178 179
            "Variable set_value function, arguments type only support Variable, numpy, VarBase, dict, string."

        if isinstance(value, (dict, str)):
            assert len(self) == len(
                value
            ), "Variable length not match, Variable [ {} ] need tensor with length {} but load set tensor with length {}".format(
                self.name, len(self), len(value))
            if isinstance(value, dict):
                self.value().set_vocab(value)
            else:
                self.value().set_string_list(value)
        else:
C
crystal 已提交
180
            assert self.shape == list(value.shape),  \
S
Steffy-zxf 已提交
181
                "Variable Shape not match, Variable [ {} ] need tensor with shape {} but load set tensor with shape {}".format(
C
crystal 已提交
182 183 184 185 186 187
                    self.name, self.shape, value.shape)

            if isinstance(value, base_tensor):
                dtype = value.dtype
            else:
                dtype = convert_np_dtype_to_dtype_(value.dtype)
188

C
crystal 已提交
189
            assert self.dtype == dtype, \
S
Steffy-zxf 已提交
190
                "Variable dtype not match, Variable [ {} ] need tensor with dtype {}  but load tensor with dtype {}".format(
C
crystal 已提交
191
                    self.name, self.dtype, dtype)
192

193
            # NOTE(wuweilong): self could be VarBase or Tensor, the subsequent behavior are defined in different files
194
            # if self is VarBase, method value() return Variable that bindded in imperative.cc, get_tensor() bindded in pybind.cc
195
            # if self is Tensor, method value() return self that defined in this file, get_tensor() defined in eager_method.cc
196
            # this Interface behavior will be unifed in the future.
C
crystal 已提交
197
            self.value().get_tensor().set(value,
S
Steffy-zxf 已提交
198
                                          framework._current_expected_place())
199 200

    @framework.dygraph_only
201
    def backward(self, grad_tensor=None, retain_graph=False):
202
        """
203
        Run backward of current Graph which starts from current Tensor.
204

205 206 207 208
        The new gradient will accumulat on previous gradient.

        You can clear gradient by ``Tensor.clear_grad()`` .

209
        Args:
C
chenjian 已提交
210 211
            grad_tensor(Tensor, optional): initial gradient values of the current Tensor. If `grad_tensor` is None,
            the initial gradient values of the current Tensor would be Tensor filled with 1.0;
212 213 214
            if `grad_tensor` is not None, it must have the same length as the current Tensor.
            Teh default value is None.

215
            retain_graph(bool, optional): If False, the graph used to compute grads will be freed. If you would
216 217 218
                like to add more ops to the built graph after calling this method( :code:`backward` ), set the parameter
                :code:`retain_graph` to True, then the grads will be retained. Thus, seting it to False is much more memory-efficient.
                Defaults to False.
219 220 221 222 223 224
        Returns:
            NoneType: None

        Examples:
            .. code-block:: python

225
                import paddle
226 227 228 229 230 231 232 233 234 235 236 237 238 239
                x = paddle.to_tensor(5., stop_gradient=False)
                for i in range(5):
                    y = paddle.pow(x, 4.0)
                    y.backward()
                    print("{}: {}".format(i, x.grad))
                # 0: [500.]
                # 1: [1000.]
                # 2: [1500.]
                # 3: [2000.]
                # 4: [2500.]

                x.clear_grad()
                print("{}".format(x.grad))
                # 0.
240

241 242 243 244 245 246 247 248 249 250 251
                grad_tensor=paddle.to_tensor(2.)
                for i in range(5):
                    y = paddle.pow(x, 4.0)
                    y.backward(grad_tensor)
                    print("{}: {}".format(i, x.grad))
                # 0: [1000.]
                # 1: [2000.]
                # 2: [3000.]
                # 3: [4000.]
                # 4: [5000.]

252
        """
J
Jiabin Yang 已提交
253
        if framework._non_static_mode():
254 255 256 257
            if in_profiler_mode():
                record_event = profiler.RecordEvent(
                    "Gradient Backward", profiler.TracerEventType.Backward)
                record_event.begin()
258
            if grad_tensor is not None:
J
Jiabin Yang 已提交
259
                if framework._in_eager_mode_:
260
                    assert isinstance(
261 262
                        grad_tensor, core.eager.
                        Tensor), "The type of grad_tensor must be paddle.Tensor"
263 264 265 266
                else:
                    assert isinstance(
                        grad_tensor, paddle.
                        Tensor), "The type of grad_tensor must be paddle.Tensor"
267 268 269 270
                assert grad_tensor.shape == self.shape, \
                    "Tensor shape not match, Tensor of grad_tensor [ {} ] with shape {} mismatch Tensor [ {} ] with shape {}".format(
                    grad_tensor.name, grad_tensor.shape, self.name, self.shape)

J
Jiabin Yang 已提交
271
            if framework._in_eager_mode_:
272 273 274 275
                if grad_tensor is None:
                    grad_tensor = []
                else:
                    grad_tensor = [grad_tensor]
276 277 278
            if _grad_scalar:
                # When using amp with Fleet DistributedStrategy, we do loss scaling implicitly.
                self = _grad_scalar.scale(self)
279 280
            if paddle.is_compiled_with_xpu() or paddle.is_compiled_with_npu(
            ) or paddle.is_compiled_with_mlu():
281
                # TODO(liuyuhui): Currently only for xpu. Will be removed in the future.
282
                scaled_loss = scale_loss(self)
J
Jiabin Yang 已提交
283
                if framework._in_eager_mode_:
284 285 286 287 288 289
                    core.eager.run_backward([scaled_loss], grad_tensor,
                                            retain_graph)
                else:
                    core.dygraph_run_backward([scaled_loss], [grad_tensor],
                                              retain_graph,
                                              framework._dygraph_tracer())
290
            else:
J
Jiabin Yang 已提交
291
                if framework._in_eager_mode_:
292 293 294 295 296
                    core.eager.run_backward([self], grad_tensor, retain_graph)
                else:
                    core.dygraph_run_backward([self], [grad_tensor],
                                              retain_graph,
                                              framework._dygraph_tracer())
297 298
            if in_profiler_mode():
                record_event.end()
299 300
        else:
            raise ValueError(
T
tianshuo78520a 已提交
301
                "Variable.backward() is only available in DyGraph mode")
302 303

    @framework.dygraph_only
304 305
    @deprecated(
        since="2.1.0",
306 307
        level=1,
        reason="Please use tensor.grad, which returns the tensor value of the gradient."
308
    )
309 310
    def gradient(self):
        """
311 312 313 314
        .. warning::
          This API will be deprecated in the future, it is recommended to use
          :code:`x.grad` which returns the tensor value of the gradient.

315
        Get the Gradient of Current Tensor.
316 317

        Returns:
318
            ndarray: Numpy value of the gradient of current Tensor
319 320 321 322

        Examples:
            .. code-block:: python

323
                import paddle
324

325 326 327
                x = paddle.to_tensor(5., stop_gradient=False)
                y = paddle.pow(x, 4.0)
                y.backward()
328
                print("grad of x: {}".format(x.gradient()))
329
                # [500.]
330 331

        """
J
Jiabin Yang 已提交
332
        if framework._in_eager_mode_:
333
            if self.grad is None:
334
                return None
335 336
            if self.grad.is_selected_rows():
                return (np.array(self.grad.numpy()), np.array(self.grad.rows()))
337 338 339 340
            return self.grad.numpy()
        else:
            if self._grad_ivar() is None:
                return None
341

342 343 344 345
            new_ivar = self._grad_ivar()._copy_to(core.CPUPlace(), True)
            if self._grad_ivar().type == core.VarDesc.VarType.SELECTED_ROWS:
                return (
                    np.array(new_ivar.value().get_selected_rows().get_tensor()),
346
                    np.array(new_ivar.value().get_selected_rows().rows()))
347 348
            else:
                return np.array(new_ivar.value().get_tensor())
349

350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
    @framework.dygraph_only
    def register_hook(self, hook):
        """
        Registers a backward hook for current Tensor.

        The hook will be called every time the gradient Tensor of current Tensor is computed.

        The hook should not modify the input gradient Tensor, but it can optionally return
        a new gradient Tensor which will be used in place of current Tensor's gradient.

        The hook should have the following signature:

            hook(grad) -> Tensor or None

        Args:
            hook(function): A backward hook to be registered for Tensor.grad

        Returns:
            TensorHookRemoveHelper: A helper object that can be used to remove the registered hook by calling `remove()` method.

        Examples:
            .. code-block:: python

                import paddle

                # hook function return None
                def print_hook_fn(grad):
                    print(grad)

                # hook function return Tensor
                def double_hook_fn(grad):
                    grad = grad * 2
                    return grad

                x = paddle.to_tensor([0., 1., 2., 3.], stop_gradient=False)
                y = paddle.to_tensor([4., 5., 6., 7.], stop_gradient=False)
                z = paddle.to_tensor([1., 2., 3., 4.])

                # one Tensor can register multiple hooks
                h = x.register_hook(print_hook_fn)
                x.register_hook(double_hook_fn)

                w = x + y
                # register hook by lambda function
                w.register_hook(lambda grad: grad * 2)

                o = z.matmul(w)
                o.backward()
                # print_hook_fn print content in backward
                # Tensor(shape=[4], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [2., 4., 6., 8.])

                print("w.grad:", w.grad) # w.grad: [1. 2. 3. 4.]
                print("x.grad:", x.grad) # x.grad: [ 4.  8. 12. 16.]
                print("y.grad:", y.grad) # y.grad: [2. 4. 6. 8.]

                # remove hook
                h.remove()
        """
        if self.stop_gradient is True:
            raise RuntimeError(
                "Cannot register hook on a tensor that stop gradient.")

        hook_id = self._register_grad_hook(hook)
        helper = TensorHookRemoveHelper(self, hook_id)
        return helper

417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
    @framework.dygraph_only
    def _to(self, device=None, dtype=None, blocking=None):

        if device is None and dtype is None and blocking is None:
            return self

        if device is not None:
            if isinstance(device, str):
                device = paddle.device._convert_to_place(device)
            elif isinstance(device, (core.CPUPlace, core.CUDAPlace,
                                     core.CUDAPinnedPlace, core.XPUPlace)):
                pass
            else:
                raise ValueError(
                    "device value error, must be str, paddle.CPUPlace(), paddle.CUDAPlace(), paddle.CUDAPinnedPlace() or paddle.XPUPlace(), but the type of device is "
                    + type(device).__name__)

        if blocking is None:
            blocking = True
        else:
            assert isinstance(
                blocking,
                bool), "blocking value error, must be the True, False or None"

        def transform(t, device, dtype, blocking):
            if device is None:
                device = t.place
            if dtype is None:
                dtype = t.dtype
446 447
            if type(dtype) is str:
                dtype = framework.convert_np_dtype_to_dtype_(dtype)
448 449 450

            # 1. gpu place need to determine whether the memory is sufficient for allocation.
            if t.place.is_gpu_place():
451
                size_dtype = core.size_of_dtype(dtype)
452 453 454 455 456
                # Note(weilong wu): Paddle GPU minimum memory allocation unit is 256 bytes,
                # waiting_alloc_memory will compute the memory space occupied by 't'.
                # Coefficient 1.2 is used to avoid OOM that may occur in this critical state when the memory is just enough.
                waiting_alloc_memory = (
                    (t._numel() * size_dtype) / 256 + 1) * 256 * 1.2
457
                gpu_memory_available = core.gpu_memory_available()
458 459 460 461 462 463 464 465 466 467 468 469 470
                if gpu_memory_available < waiting_alloc_memory:
                    # Copy Tensor to cpu
                    t_used = t._copy_to(paddle.CPUPlace(), blocking)
                    # Release memory of t
                    t._clear()
                else:
                    # Tensor still in GPU
                    t_used = t
            else:
                t_used = t

            # 2. cast Tensor to dtype
            if dtype is not None and dtype != t_used.dtype:
471 472 473
                with paddle.fluid.framework._dygraph_place_guard(
                        place=t_used.place):
                    t_casted = t_used.cast(dtype=dtype)
474 475 476 477
            else:
                t_casted = t_used

            # 3. Copy casted Tensor(in CPU or GPU) to device
478 479 480 481
            if device is not None and not t_casted.place._equals(device):
                new_t = t_casted._copy_to(device, blocking)
            else:
                new_t = t_casted
482 483 484 485 486 487 488 489 490 491 492 493

            # 4. Share Tensor to origin Tensor
            dst_tensor = t.value().get_tensor()
            src_tensor = new_t.value().get_tensor()
            dst_tensor._share_data_with(src_tensor)

            return t

        with warnings.catch_warnings():
            warnings.filterwarnings("ignore", category=UserWarning)
            return transform(self, device, dtype, blocking)

494 495 496
    @property
    def grad(self):
        """
497
        .. warning::
C
chenjian 已提交
498
          This API will return the tensor value of the gradient. If you want
499 500 501 502 503 504 505 506 507 508 509
          to get the numpy value of the gradient, you can use :code:`x.grad.numpy()`.

        Get the Gradient of Current Tensor.

        Returns:
            Tensor: the gradient of current Tensor

        Examples:
            .. code-block:: python

                import paddle
510

511 512 513 514 515 516 517
                x = paddle.to_tensor(5., stop_gradient=False)
                y = paddle.pow(x, 4.0)
                y.backward()
                print("grad of x: {}".format(x.grad))
                # Tensor(shape=[1], dtype=float32, place=CUDAPlace(0), stop_gradient=False, [500.])

        """
518 519 520 521
        msg = 'tensor.grad will return the tensor value of the gradient.' \
            ' This is an incompatible upgrade for tensor.grad API. ' \
            ' It\'s return type changes from numpy.ndarray in version 2.0 to paddle.Tensor in version 2.1.0. ' \
            ' If you want to get the numpy value of the gradient, you can use :code:`x.grad.numpy()`'
522
        warning_msg = "\033[93m\nWarning:\n%s \033[0m" % (msg)
523 524 525
        # ensure ANSI escape sequences print correctly in cmd and powershell
        if sys.platform.lower() == 'win32':
            warning_msg = "\nWarning:\n%s " % (msg)
526
        warnings.warn(warning_msg)
527
        return self._grad_ivar()
528

529 530 531 532 533 534
    def clear_grad(self):
        """
        The alias of clear_gradient().
        """
        self.clear_gradient()

535 536
    def item(self, *args):
        """
C
chenjian 已提交
537
        Convert element at specific position in Tensor into Python scalars. If the position is not specified, the Tensor must be a
538
        single-element Tensor.
539 540 541 542 543 544 545 546 547

        Args:
            *args(int): The input coordinates. If it's single int, the data in the corresponding order of flattened Tensor will be returned.
                Default: None, and it must be in the case where Tensor has only one element.

        Returns(Python scalar): A Python scalar, whose dtype is corresponds to the dtype of Tensor.

        Raises:
            ValueError: If the Tensor has more than one element, there must be coordinates.
C
chenjian 已提交
548

549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
        Examples:
            .. code-block:: python

                import paddle

                x = paddle.to_tensor(1)
                print(x.item())             #1
                print(type(x.item()))       #<class 'int'>

                x = paddle.to_tensor(1.0)
                print(x.item())             #1.0
                print(type(x.item()))       #<class 'float'>

                x = paddle.to_tensor(True)
                print(x.item())             #True
                print(type(x.item()))       #<class 'bool'>

                x = paddle.to_tensor(1+1j)
                print(x.item())             #(1+1j)
                print(type(x.item()))       #<class 'complex'>

                x = paddle.to_tensor([[1.1, 2.2, 3.3]])
                print(x.item(2))            #3.3
                print(x.item(0, 2))         #3.3

        """
        return self._getitem_from_offset(*args).item()

577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
    @property
    def inplace_version(self):
        """
        The inplace version of current Tensor.
        The version number is incremented whenever the current Tensor is modified through an inplace operation.

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle
            var = paddle.ones(shape=[4, 2, 3], dtype="float32")
            print(var.inplace_version)  # 0

            var[1] = 2.2
            print(var.inplace_version)  # 1

        """
        return self._inplace_version()

598 599
    def __str__(self):
        """
600
        Convert a VarBase object to a readable string.
601

602
        Returns(str): A readable string.
603 604 605 606

        Examples:
            .. code-block:: python

607
                import paddle
608
                x = paddle.rand([2, 5])
609
                print(x)
C
chenjian 已提交
610

611 612 613
                # Tensor(shape=[2, 5], dtype=float32, place=CPUPlace,
                #        [[0.30574632, 0.55739117, 0.30902600, 0.39413780, 0.44830436],
                #         [0.79010487, 0.53972793, 0.09495186, 0.44267157, 0.72112119]])
614
        """
J
Jiabin Yang 已提交
615
        if framework._in_eager_mode_:
616 617
            from paddle.tensor.to_string import tensor_to_string
            return tensor_to_string(self)
618 619 620
        else:
            from paddle.tensor.to_string import to_string
            return to_string(self)
621

622 623 624 625 626 627 628 629 630 631 632
    def __deepcopy__(self, memo):
        """
        Deep copy Tensor, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                x = paddle.to_tensor(2.)
                y = copy.deepcopy(x)
C
chenjian 已提交
633

634 635 636 637 638 639 640 641 642 643 644 645 646
                print(x)
                # Tensor(shape=[1], dtype=float32, place=CPUPlace, stop_gradient=True,
                #        [2.])

                print(y)
                # Tensor(shape=[1], dtype=float32, place=CPUPlace, stop_gradient=True,
                #        [2.])

        """
        if not self.is_leaf:
            raise RuntimeError(
                "Only Leaf Tensor support the deepcopy at the moment, non-Leaf Tensors contains graph information that does't support deepcopy"
            )
J
Jiabin Yang 已提交
647
        if framework._in_eager_mode_:
648
            new_varbase = core.eager.Tensor()
649 650
        else:
            new_varbase = core.VarBase()
651 652 653 654 655
        new_varbase.name = self.name + unique_name.generate("_deepcopy")
        memo[id(self)] = new_varbase
        new_varbase.copy_(self, True)
        return new_varbase

656 657 658
    @property
    def block(self):
        return framework.default_main_program().global_block()
659

660 661 662
    def __nonzero__(self):
        numel = np.prod(self.shape)
        assert numel == 1, "When Variable is used as the condition of if/while , Variable can only contain one element."
J
Jiabin Yang 已提交
663
        if framework._in_eager_mode_:
664 665 666 667 668 669
            assert self._is_initialized(), "tensor not initialized"
            return bool(np.all(self.numpy() > 0))
        else:
            tensor = self.value().get_tensor()
            assert tensor._is_initialized(), "tensor not initialized"
            return bool(np.all(tensor.__array__() > 0))
670 671 672 673

    def __bool__(self):
        return self.__nonzero__()

674
    def __array__(self, dtype=None):
675 676
        """
        Returns a numpy array shows the value of current Tensor.
C
chenjian 已提交
677

678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698
        Returns:
            ndarray: The numpy value of current Tensor.

        Returns type:
            ndarray: dtype is same as current Tensor

        Examples:
            .. code-block:: python

                import paddle
                import numpy as np
                x = paddle.randn([2, 2])
                x_array = np.array(x)

                print(type(x_array))      #<class 'numpy.ndarray'>
                print(x_array.shape)      #(2, 2)
        """
        array = self.numpy()
        if dtype:
            array = array.astype(dtype)
        return array
699

W
WeiXin 已提交
700
    def contain_tensor(item):
701
        if not isinstance(item, (tuple, list)):
W
WeiXin 已提交
702 703 704 705 706 707 708 709 710
            item = [item]

        for slice_item in item:
            if isinstance(slice_item, slice):
                if isinstance(slice_item.start, Variable)  \
                    or isinstance(slice_item.stop, Variable) \
                        or isinstance(slice_item.step, Variable):
                    return True
            else:
W
WeiXin 已提交
711 712 713
                if isinstance(
                        slice_item,
                    (Variable, np.ndarray)) and Variable.dtype != paddle.bool:
W
WeiXin 已提交
714 715 716
                    return True
        return False

717
    def __getitem__(self, item):
W
WeiXin 已提交
718 719 720 721 722 723
        def is_list_tuple(index, contain_type):
            def _is_list_tuple(item):
                if isinstance(item, (tuple, list)):
                    for s in item:
                        if not _is_list_tuple(s):
                            return False
724 725 726
                else:
                    if type(item) != contain_type:
                        return False
W
WeiXin 已提交
727
                return True
728

W
WeiXin 已提交
729 730 731 732 733 734 735 736
            if not isinstance(index, (tuple, list)):
                return False
            for s in index:
                if not _is_list_tuple(s):
                    return False
            return True

        if contain_tensor(item) or is_list_tuple(item, int):
737 738 739 740 741 742 743 744
            # 1. Call _getitem_impl_ when item contains tensor.
            # Why not call a c++ function ? Because item can't be parsed when it contains tensor.
            return _getitem_impl_(self, item)

        else:
            # 2. Call c++ func getitem_index_not_tensor to speedup.
            return self._getitem_index_not_tensor(item)

W
WeiXin 已提交
745
    def __setitem__(self, item, value):
Z
zyfncg 已提交
746 747 748
        def contain_tensor_or_list(item):
            if not isinstance(item, tuple):
                item = [item]
W
WeiXin 已提交
749

Z
zyfncg 已提交
750 751 752 753 754 755 756 757
            for slice_item in item:
                if isinstance(slice_item, list):
                    return True
                elif isinstance(slice_item, Variable):
                    return True

            return False

758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779
        def is_combine_index(item):
            var_type = None
            item_type = None
            if isinstance(item, (tuple, list)):
                for slice_item in item:
                    if item_type is None:
                        item_type = type(slice_item)
                    else:
                        if type(slice_item) != item_type:
                            return True

                    if isinstance(slice_item, Variable):
                        if var_type is None:
                            var_type = slice_item.dtype
                        else:
                            if var_type != slice_item.dtype:
                                return True
                return False

            return False

        if contain_tensor_or_list(item) and not is_combine_index(item):
Z
zyfncg 已提交
780 781
            # To reuse code with static graph,
            # Call _setitem_impl_ when item contains tensor or list.
W
WeiXin 已提交
782 783 784
            return _setitem_impl_(self, item, value)

        else:
J
Jiabin Yang 已提交
785
            if framework._in_eager_mode_:
W
wanghuancoder 已提交
786 787 788 789
                return self.__setitem_eager_tensor__(item, value)
            else:
                # Call c++ func __setitem_varbase__ to speedup.
                return self.__setitem_varbase__(item, value)
W
WeiXin 已提交
790

791 792
    @framework.dygraph_only
    def _grad_ivar(self):
793 794 795 796
        if self.grad is not None:
            if self.grad._is_initialized():
                return self.grad
        return None
797

798 799 800 801 802 803 804 805 806 807
    @framework.dygraph_only
    def _set_grad_ivar(self, value):
        if isinstance(self, EagerParamBase):
            self.grad = value
        else:
            raise TypeError(
                "_set_grad_ivar is only supported for Parameter Tensor")

    @framework.dygraph_only
    def clone(self):
C
chentianyu03 已提交
808 809 810
        if in_dygraph_mode():
            return _C_ops.final_state_assign(self)

811 812 813 814 815
        if _in_legacy_dygraph():
            output = core.VarBase()
        else:
            output = core.eager.Tensor()
        return _C_ops.assign(self, output)
816

817 818 819 820
    @framework.dygraph_only
    def value(self):
        return self

J
Jiabin Yang 已提交
821 822 823 824 825 826 827 828
    @framework.dygraph_only
    def _slice(self, begin_idx, end_idx):
        return core.eager.Tensor(self.get_tensor()._slice(begin_idx, end_idx))

    @framework.dygraph_only
    def _numel(self):
        return self.get_tensor()._numel()

B
Baibaifan 已提交
829 830 831 832
    @framework.dygraph_only
    def _clear_data(self):
        self.get_tensor()._clear()

833 834
    @framework.dygraph_only
    def _uva(self, device_id=0):
W
Weilong Wu 已提交
835 836 837 838 839 840 841 842 843 844 845 846 847 848 849
        '''
        Returns self tensor with the UVA(unified virtual addressing).

        Args:
            device_id(int, optional): The destination GPU device id. Default: None, means current device.

        Examples:
            .. code-block:: python

              # required: gpu
              import paddle
              x = paddle.to_tensor([1, 2, 3], place=paddle.CPUPlace())
              x._uva()
              print(x)
        '''
850 851
        self._tensor_uva(device_id)

J
Jiabin Yang 已提交
852 853 854 855 856 857 858 859 860 861 862
    @framework.dygraph_only
    def cpu(self):
        if self.place.is_cpu_place():
            return self
        else:
            res = self._copy_to(core.CPUPlace(), True)
            res.stop_gradient = self.stop_gradient
            res.persistable = self.persistable
            return res

    @framework.dygraph_only
863 864 865 866 867
    def cuda(self, device_id=0, blocking=True):
        if device_id is None:
            device_id = 0
        if not isinstance(device_id, int):
            raise ValueError("\'device_id\' must be a positive integer")
J
Jiabin Yang 已提交
868 869 870 871 872 873 874 875
        if self.place.is_gpu_place():
            return self
        else:
            res = self._copy_to(core.CUDAPlace(device_id), True)
            res.stop_gradient = self.stop_gradient
            res.persistable = self.persistable
            return res

W
wanghuancoder 已提交
876 877 878 879 880 881 882 883 884 885
    @framework.dygraph_only
    def pin_memory(self):
        if self.place.is_cuda_pinned_place():
            return self
        else:
            res = self._copy_to(core.CUDAPinnedPlace(), True)
            res.stop_gradient = self.stop_gradient
            res.persistable = self.persistable
            return res

886 887
    @framework.dygraph_only
    def values(self):
Z
zhangkaihuo 已提交
888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909
        """
        **Notes**:
            **This API is ONLY available in Dygraph mode**
        Get the values of current SparseTensor(COO or CSR).

        Returns:
            Tensor: A DenseTensor

        Examples:
            .. code-block:: python

                import paddle
                from paddle.fluid.framework import _test_eager_guard
                with _test_eager_guard():
                    indices = [[0, 0, 1, 2, 2], [1, 3, 2, 0, 1]]
                    values = [1, 2, 3, 4, 5]
                    dense_shape = [3, 4]
                    sparse_x = paddle.sparse.sparse_coo_tensor(paddle.to_tensor(indices, dtype='int32'), paddle.to_tensor(values, dtype='float32'), shape=dense_shape)
                    print(sparse_x.values())
                    #[1, 2, 3, 4, 5]
        """

910 911
        if self.is_sparse_coo() or self.is_sparse_csr():
            return _C_ops.final_state_sparse_values(self)
912 913 914 915 916 917
        else:
            raise ValueError(
                "only SparseCooTensor and SparseCsrTensor have method values")

    @framework.dygraph_only
    def to_dense(self):
Z
zhangkaihuo 已提交
918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941
        """
        **Notes**:
            **This API is ONLY available in Dygraph mode**
        Convert the current SparseTensor(COO or CSR) to DenseTensor.

        Returns:
            Tensor: A DenseTensor

        Examples:
            .. code-block:: python

                import paddle
                from paddle.fluid.framework import _test_eager_guard
                with _test_eager_guard():
                    indices = [[0, 0, 1, 2, 2], [1, 3, 2, 0, 1]]
                    values = [1, 2, 3, 4, 5]
                    dense_shape = [3, 4]
                    sparse_x = paddle.sparse.sparse_coo_tensor(paddle.to_tensor(indices, dtype='int64'), paddle.to_tensor(values, dtype='float32'), shape=dense_shape)
                    dense_x = sparse_x.to_dense()
                    #[[0., 1., 0., 2.],
                    # [0., 0., 3., 0.],
                    # [4., 5., 0., 0.]]
        """

942 943 944 945 946 947 948 949 950
        if self.is_sparse_coo():
            return _C_ops.final_state_sparse_coo_to_dense(self)
        elif self.is_sparse_csr():
            return _C_ops.final_state_sparse_to_dense(self)
        else:
            return self

    @framework.dygraph_only
    def to_sparse_coo(self, sparse_dim):
Z
zhangkaihuo 已提交
951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972
        """
        **Notes**:
            **This API is ONLY available in Dygraph mode**
        Convert the current DenseTensor to SparseTensor in COO format.

        Returns:
            Tensor: A SparseCooTensor

        Examples:
            .. code-block:: python

                import paddle
                from paddle.fluid.framework import _test_eager_guard
                with _test_eager_guard():
                    dense_x = [[0, 1, 0, 2], [0, 0, 3, 4]]
                    dense_x = paddle.to_tensor(dense_x, dtype='float32')
                    sparse_x = dense_x.to_sparse_coo(sparse_dim=2)
                    #indices=[[0, 0, 1, 1],
                    #         [1, 3, 2, 3]],
                    #values=[1., 2., 3., 4.]
        """

973 974 975 976 977 978 979 980 981 982 983
        if self.is_sparse_csr():
            return _C_ops.final_state_sparse_to_sparse_coo(self, sparse_dim)
        elif self.is_sparse_coo():
            return self
        elif self.is_selected_rows():
            raise ValueError(
                "SelectedRows does not support to_sparse_coo method")
        else:
            #is dense tensor
            return _C_ops.final_state_sparse_dense_to_coo(self, sparse_dim)

J
Jiabin Yang 已提交
984
    if framework._in_eager_mode_ and not hasattr(core, "eager"):
985 986
        return

987 988
    for method_name, method in (
        ("__bool__", __bool__), ("__nonzero__", __nonzero__),
989
        ("_to_static_var", _to_static_var), ("set_value", set_value),
990
        ("block", block), ("backward", backward), ("clear_grad", clear_grad),
991 992 993 994
        ("inplace_version", inplace_version), ("gradient", gradient),
        ("register_hook", register_hook), ("__str__", __str__),
        ("__repr__", __str__), ("__deepcopy__", __deepcopy__),
        ("__module__", "paddle"), ("__array__", __array__),
W
WeiXin 已提交
995
        ("__getitem__", __getitem__), ("item", item),
996 997
        ("__setitem__", __setitem__), ("_to", _to), ("values", values),
        ("to_dense", to_dense), ("to_sparse_coo", to_sparse_coo)):
J
Jiabin Yang 已提交
998
        if framework._in_eager_mode_:
999
            setattr(core.eager.Tensor, method_name, method)
L
Leo Chen 已提交
1000
        else:
1001 1002
            setattr(core.VarBase, method_name, method)

J
Jiabin Yang 已提交
1003
    if framework._in_eager_mode_:
1004 1005 1006 1007
        setattr(core.eager.Tensor, "_grad_ivar", _grad_ivar)
        setattr(core.eager.Tensor, "_set_grad_ivar", _set_grad_ivar)
        setattr(core.eager.Tensor, "clone", clone)
        setattr(core.eager.Tensor, "value", value)
J
Jiabin Yang 已提交
1008 1009
        setattr(core.eager.Tensor, "cpu", cpu)
        setattr(core.eager.Tensor, "cuda", cuda)
W
wanghuancoder 已提交
1010
        setattr(core.eager.Tensor, "pin_memory", pin_memory)
J
Jiabin Yang 已提交
1011 1012
        setattr(core.eager.Tensor, "_slice", _slice)
        setattr(core.eager.Tensor, "_numel", _numel)
1013
        setattr(core.eager.Tensor, "_uva", _uva)
B
Baibaifan 已提交
1014
        setattr(core.eager.Tensor, "_clear_data", _clear_data)
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
    else:
        setattr(core.VarBase, "__name__", "Tensor")
        setattr(core.VarBase, "grad", grad)

    global _already_patch_repr
    if not _already_patch_repr:
        # NOTE(zhiqiu): pybind11 will set a default __str__ method of enum class.
        # So, we need to overwrite it to a more readable one.
        # See details in https://github.com/pybind/pybind11/issues/2537.
        origin = getattr(core.VarDesc.VarType, "__repr__")

        def dtype_str(dtype):
            if dtype in _PADDLE_DTYPE_2_NUMPY_DTYPE:
                prefix = 'paddle.'
                return prefix + _PADDLE_DTYPE_2_NUMPY_DTYPE[dtype]
            else:
                # for example, paddle.fluid.core.VarDesc.VarType.LOD_TENSOR
                return origin(dtype)
L
Leo Chen 已提交
1033

1034 1035
        setattr(core.VarDesc.VarType, "__repr__", dtype_str)
        _already_patch_repr = True
L
Leo Chen 已提交
1036

1037 1038
    # patch math methods for varbase
    monkey_patch_math_varbase()