elementwise_base.h 28.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include "paddle/fluid/platform/transform.h"
18 19 20
#include "paddle/phi/backends/all_context.h"
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/kernels/empty_kernel.h"
21 22
#include "paddle/phi/kernels/funcs/common_shape.h"
#include "paddle/phi/kernels/funcs/elementwise_utils.h"
23
#include "paddle/phi/kernels/funcs/math_function.h"
24

25
#if defined(__NVCC__) || defined(__HIPCC__) || defined(__xpu__)
26 27
#include "paddle/fluid/platform/aligned_vector.h"
#include "paddle/fluid/platform/function_traits.h"
28 29
#include "paddle/phi/backends/gpu/gpu_launch_config.h"
#include "paddle/phi/kernels/primitive/kernel_primitives.h"
30

31
#define HOSTDEVICE __host__ __device__
32
namespace kps = phi::kps;
33 34 35

#endif

36
namespace phi {
37

38 39 40 41 42
enum ElementwiseType { kUnary = 1, kBinary = 2, kTernary = 3, kAny = -1 };
/* Packing scalar type T(float, int etc.) into Array<T, NumOuts> type
   for supporting multiple-output feature in elementwise system.*/
template <class T, int Num>
using ConditionalT =
43
    typename std::conditional_t<Num == 1, T, phi::Array<T, Num>>;
44 45

namespace funcs {
46
using DDim = phi::DDim;
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156

template <typename T, typename DeviceContext>
class RowwiseTransformIterator;

template <typename T, typename DeviceContext>
class MidWiseTransformIterator;

// NOTE(dzhwinter): ptrdiff_t in iterator is deperecated in c++17
template <typename T>
class RowwiseTransformIterator<T, CPUContext>
    : public std::iterator<std::random_access_iterator_tag,
                           T,
                           std::ptrdiff_t,
                           T *,
                           T &> {
 public:
  RowwiseTransformIterator(const T *ptr, int n) : ptr_(ptr), i_(0), n_(n) {}

  RowwiseTransformIterator<T, CPUContext> &operator++() {
    ++i_;
    if (UNLIKELY(i_ == n_)) {
      i_ = 0;
    }
    return *this;
  }

  RowwiseTransformIterator<T, CPUContext> &operator+(int n) {
    while (n-- > 0) {
      ++i_;
      if (UNLIKELY(i_ == n_)) {
        i_ = 0;
      }
    }

    return *this;
  }

  bool operator==(const RowwiseTransformIterator<T, CPUContext> &rhs) const {
    return (ptr_ + i_) == &(*rhs);
  }

  bool operator!=(const RowwiseTransformIterator<T, CPUContext> &rhs) const {
    return (ptr_ + i_) != &(*rhs);
  }

  const T &operator*() { return ptr_[i_]; }

 private:
  const T *ptr_;
  int i_;
  int64_t n_;
};

template <typename T>
class MidWiseTransformIterator<T, CPUContext>
    : public std::iterator<std::random_access_iterator_tag,
                           T,
                           std::ptrdiff_t,
                           T *,
                           T &> {
 public:
  MidWiseTransformIterator(const T *ptr, int n, int post)
      : ptr_(ptr), i_(0), j_(0), n_(n), post_(post) {}

  MidWiseTransformIterator<T, CPUContext> &operator++() {
    ++j_;
    if (UNLIKELY(j_ == post_)) {
      ++i_;
      j_ = 0;
      if (UNLIKELY(i_ == n_)) {
        i_ = 0;
      }
    }
    return *this;
  }

  MidWiseTransformIterator<T, CPUContext> &operator+(int n) {
    while (n-- > 0) {
      ++j_;
      if (UNLIKELY(j_ == post_)) {
        ++i_;
        j_ = 0;
        if (UNLIKELY(i_ == n_)) {
          i_ = 0;
        }
      }
    }
    return *this;
  }

  bool operator==(const MidWiseTransformIterator<T, CPUContext> &rhs) const {
    return (ptr_ + i_) == &(*rhs);
  }

  bool operator!=(const MidWiseTransformIterator<T, CPUContext> &rhs) const {
    return (ptr_ + i_) != &(*rhs);
  }

  const T &operator*() { return ptr_[i_]; }

 private:
  const T *ptr_;
  int64_t i_;
  int64_t j_;
  int64_t n_;
  int64_t post_;
};

#if defined(__NVCC__) || defined(__HIPCC__)
template <typename T>
157 158
class RowwiseTransformIterator<T, GPUContext>
    : public thrust::iterator_adaptor<RowwiseTransformIterator<T, GPUContext>,
159 160
                                      const T *> {
 public:
161
  typedef thrust::iterator_adaptor<RowwiseTransformIterator<T, GPUContext>,
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
                                   const T *>
      super_t;
  HOSTDEVICE RowwiseTransformIterator(const T *x, int n)
      : super_t(x), begin_(x), n_(n) {}
  friend class thrust::iterator_core_access;

 private:
  unsigned int n_;
  const T *begin_;
  HOSTDEVICE typename super_t::reference dereference() const {
    return *(begin_ + (this->base() - begin_) % n_);
  }
};

template <typename T>
177 178
class MidWiseTransformIterator<T, GPUContext>
    : public thrust::iterator_adaptor<MidWiseTransformIterator<T, GPUContext>,
179 180
                                      const T *> {
 public:
181
  typedef thrust::iterator_adaptor<MidWiseTransformIterator<T, GPUContext>,
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
                                   const T *>
      super_t;
  HOSTDEVICE MidWiseTransformIterator(const T *x, int n, int post)
      : super_t(x), begin_(x), n_(n), post_(post) {}
  friend class thrust::iterator_core_access;

 private:
  unsigned int post_;
  unsigned int n_;
  const T *begin_;
  HOSTDEVICE typename super_t::reference dereference() const {
    return *(begin_ + (((this->base() - begin_) / post_) % n_));
  }
};
#endif

template <typename Functor,
          typename T,
          typename DeviceContext,
          typename OutType = T>
class TransformFunctor {
 public:
  TransformFunctor(const DenseTensor &x,
                   const DenseTensor &y,
                   DenseTensor *z,
                   const DeviceContext &ctx,
                   Functor func,
                   const bool is_xsize_larger = true)
      : x_(x.data<T>()),
        y_(y.data<T>()),
212
        z_(ctx.template Alloc<OutType>(z)),
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
        nx_(x.numel()),
        ctx_(ctx),
        func_(func),
        is_xsize_larger_(is_xsize_larger) {
    if (is_xsize_larger_ == false) {
      nx_ = y.numel();
    }
  }

  inline void Run() const {
    paddle::platform::Transform<DeviceContext> trans;
    trans(ctx_, x_, x_ + nx_, y_, z_, func_);
  }

  inline void RunRowWise(int n, int pre) const {
    paddle::platform::Transform<DeviceContext> trans;
    if (is_xsize_larger_) {
      trans(ctx_,
            x_,
            x_ + nx_,
            RowwiseTransformIterator<T, DeviceContext>(y_, n),
            z_,
            func_);
    } else {
      trans(ctx_,
            y_,
            y_ + nx_,
            RowwiseTransformIterator<T, DeviceContext>(x_, n),
            z_,
            func_);
    }
  }

  inline void RunMidWise(int n, int pre, int post) const {
    paddle::platform::Transform<DeviceContext> trans;
    if (is_xsize_larger_) {
      trans(ctx_,
            x_,
            x_ + nx_,
            MidWiseTransformIterator<T, DeviceContext>(y_, n, post),
            z_,
            func_);
    } else {
      trans(ctx_,
            y_,
            y_ + nx_,
            MidWiseTransformIterator<T, DeviceContext>(x_, n, post),
            z_,
            func_);
    }
  }

 private:
  const T *x_;
  const T *y_;
  OutType *z_;
  int64_t nx_;
  const DeviceContext &ctx_;
  Functor func_;
  bool is_xsize_larger_;
};

275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
template <typename Functor, typename T, typename OutType = T>
void CommonForwardBroadcastCPU(const DenseTensor &x,
                               const DenseTensor &y,
                               DenseTensor *z,
                               int *x_dims_array,
                               int *y_dims_array,
                               int *out_dims_array,
                               int max_dim,
                               const CPUContext &ctx,
                               Functor func,
                               const bool is_xsize_larger = true) {
  std::vector<int> index_array(max_dim, 0);
  const T *x_data = x.data<T>();
  const T *y_data = y.data<T>();
  PADDLE_ENFORCE_NOT_NULL(
      x_data, errors::InvalidArgument("The input X should not be empty."));
  PADDLE_ENFORCE_NOT_NULL(
      y_data, errors::InvalidArgument("The input Y should not be empty."));
  OutType *out_data = ctx.Alloc<OutType>(z);

  const int out_size = std::accumulate(
      out_dims_array, out_dims_array + max_dim, 1, std::multiplies<int>());
  int x_index, y_index;
  for (int out_index = 0; out_index < out_size; ++out_index) {
    x_index = GetElementwiseIndex(x_dims_array, max_dim, index_array.data());
    y_index = GetElementwiseIndex(y_dims_array, max_dim, index_array.data());
    if (is_xsize_larger) {
      out_data[out_index] = func(x_data[x_index], y_data[y_index]);
    } else {
      out_data[out_index] = func(y_data[y_index], x_data[x_index]);
    }

    UpdateElementwiseIndexArray(out_dims_array, max_dim, index_array.data());
308 309 310
  }
}

311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
template <typename Functor, typename T, typename OutType = T>
void CommonElementwiseBroadcastForward(const CPUContext &dev_ctx,
                                       const DenseTensor &x,
                                       const DenseTensor &y,
                                       DenseTensor *z,
                                       const DDim &x_dims,
                                       const DDim &y_dims,
                                       Functor func,
                                       int axis,
                                       const bool is_xsize_larger = true) {
  int max_dim = (std::max)(x_dims.size(), y_dims.size());
  axis = (axis == -1 ? std::abs(x_dims.size() - y_dims.size()) : axis);
  PADDLE_ENFORCE_GE(
      axis,
      0,
      phi::errors::InvalidArgument(
          "Axis should be great than or equal to 0, but received axis is %d.",
          axis));
  PADDLE_ENFORCE_LT(axis,
                    max_dim,
                    phi::errors::InvalidArgument(
                        "Axis should be less than %d, but received axis is %d.",
                        max_dim,
                        axis));
  std::vector<int> x_dims_array(max_dim);
  std::vector<int> y_dims_array(max_dim);
  std::vector<int> out_dims_array(max_dim);
  GetBroadcastDimsArrays(x_dims,
                         y_dims,
                         x_dims_array.data(),
                         y_dims_array.data(),
                         out_dims_array.data(),
                         max_dim,
                         axis);

  CommonForwardBroadcastCPU<Functor, T, OutType>(x,
                                                 y,
                                                 z,
                                                 x_dims_array.data(),
                                                 y_dims_array.data(),
                                                 out_dims_array.data(),
                                                 max_dim,
                                                 dev_ctx,
                                                 func,
                                                 is_xsize_larger);
}

// It is a common CPU implementation to compute binary calculation with the
// support of broadcast. Note:
// 1. CPU implementation cannot support the case when x needs broadcast, thus
//    this function need to be called with XxxFunctor and XxxInverseFunctor,
//    like AddFunctor and InverseAddFunctor.
// 2. The corresponding GPU implementation supports all the broadcast cases,
//    thus there is no need to define and call with XxxInverseFunctor.
// TODO(liuyiqun): optimize the CPU implementation to support all broadcast
// cases and avoid the need of XxxInverseFunctor.
template <typename Functor, typename T, typename OutType = T>
void ElementwiseCompute(const CPUContext &dev_ctx,
                        const DenseTensor &x,
                        const DenseTensor &y,
                        int axis,
                        Functor func,
                        DenseTensor *z) {
  dev_ctx.Alloc<OutType>(z);
  auto x_dims = x.dims();
  auto y_dims = y.dims();
  bool is_xsize_larger = true;
  int max_dim = x_dims.size();
  if (x_dims.size() < y_dims.size()) {
    is_xsize_larger = false;
    max_dim = y_dims.size();
  }
  TransformFunctor<Functor, T, CPUContext, OutType> functor(
      x, y, z, dev_ctx, func, is_xsize_larger);
  if (x_dims == y_dims) {
    functor.Run();
    return;
  }

  axis = (axis == -1 ? std::abs(x_dims.size() - y_dims.size()) : axis);
  PADDLE_ENFORCE_GE(
      axis,
      0,
      errors::InvalidArgument(
          "Axis should be great than or equal to 0, but received axis is %d.",
          axis));
  PADDLE_ENFORCE_LT(axis,
                    max_dim,
                    errors::InvalidArgument(
                        "Axis should be less than %d, but received axis is %d.",
                        max_dim,
                        axis));

  int pre, n, post, is_run_common_broadcast, axis_trim = 0;
  if (is_xsize_larger) {
    auto y_dims_trimed = TrimTrailingSingularDims(y_dims);
    axis_trim = (y_dims_trimed.size() == 0) ? x_dims.size() : axis;
    GetMidDims(x_dims,
               y_dims_trimed,
               axis_trim,
               &pre,
               &n,
               &post,
               &is_run_common_broadcast);
  } else {
    auto x_dims_trimed = TrimTrailingSingularDims(x_dims);
    axis_trim = (x_dims_trimed.size() == 0) ? y_dims.size() : axis;
    GetMidDims(y_dims,
               x_dims_trimed,
               axis_trim,
               &pre,
               &n,
               &post,
               &is_run_common_broadcast);
  }
  // special case for common implementation.
  // case 1: x=[2,3,1,5], y=[2,1,4,1]
  // case 2: x=[2,3,4], y=[1,1,4]
  if (is_run_common_broadcast == 1) {
    CommonElementwiseBroadcastForward<Functor, T, OutType>(
        dev_ctx, x, y, z, x_dims, y_dims, func, axis, is_xsize_larger);
    return;
  }

  if (post == 1) {
    functor.RunRowWise(n, pre);
    return;
  } else {
    functor.RunMidWise(n, pre, post);
    return;
441 442 443
  }
}

444
// for broadcast backwards
445 446
static inline std::vector<int> GetReduceDim(const DDim &in,
                                            const DDim &out,
447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
                                            int axis) {
  axis =
      (axis == -1 ? std::abs(static_cast<int>(out.size() - in.size())) : axis);
  std::vector<int> dims;
  for (int i = 0; i < axis; ++i) {
    dims.push_back(i);
  }
  for (int i = 0; i < in.size(); ++i) {
    if (out[i + axis] != in[i]) {
      dims.push_back(i + axis);
    }
  }
  for (int i = axis + in.size(); i < out.size(); ++i) {
    dims.push_back(i);
  }
  return dims;
}

template <typename DeviceContext, typename T>
static inline void GetDoubleGradSafeTensor(const DeviceContext &dev_ctx,
                                           const DenseTensor &x,
                                           const DenseTensor *ddx,
                                           DenseTensor *ddx_safe) {
  if (ddx) {
    *ddx_safe = *ddx;
  } else {
473 474
    auto meta = phi::DenseTensorMeta(x.dtype(), x.dims(), x.layout());
    *ddx_safe = phi::Empty(dev_ctx, std::move(meta));
475
    ddx_safe->mutable_data(dev_ctx.GetPlace());
476
    SetConstant<DeviceContext, T> set_zero;
477 478 479 480 481 482 483 484 485 486 487
    set_zero(dev_ctx, ddx_safe, static_cast<T>(0));
  }
}

inline void ElementwiseGradPreProcess(const DenseTensor &dout,
                                      DenseTensor *dx) {
  if (dx != nullptr) {
    dx->set_lod(dout.lod());
  }
}

488
#if defined(__NVCC__) || defined(__HIPCC__) || defined(__xpu__)
489

490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
// static unroller
template <template <int Index, int VecSize> typename Func,
          int VecSize,
          int End,
          int Begin = 0>
struct Unroller {
  template <typename... Args>
  static HOSTDEVICE inline void step(Args &&... args) {
    Func<Begin, VecSize>::Apply(std::forward<Args>(args)...);
    Unroller<Func, VecSize, End, Begin + 1>::step(args...);
  }
};

template <template <int Index, int VecSize> typename Func, int VecSize, int End>
struct Unroller<Func, VecSize, End, End> {
  template <typename... Args>
  static HOSTDEVICE inline void step(Args &&... args) {}
};

template <int Index, int VecSize>
struct Loader {
  template <typename Array, typename ArgsT>
  static __device__ void Apply(const Array &in,
                               ArgsT *args,
                               int num,
                               int data_offset,
                               bool is_boundary) {
    using Type = std::tuple_element_t<Index, ArgsT>;
    kps::Init<Type, ArgsT, Index, VecSize>(args, static_cast<Type>(1.0f));
    if (is_boundary) {
      kps::ReadData<Type, VecSize, 1, 1, ArgsT, Index, true>(
521 522 523
          args,
          reinterpret_cast<const _ptr_ Type *>(in[Index]) + data_offset,
          num);
524 525
    } else {
      kps::ReadData<Type, VecSize, 1, 1, ArgsT, Index, false>(
526 527 528
          args,
          reinterpret_cast<const _ptr_ Type *>(in[Index]) + data_offset,
          num);
529 530 531 532 533 534 535 536 537
    }
  }
};

template <int Index, int VecSize>
struct InputSetter {
  template <typename Array>
  static HOSTDEVICE void Apply(
      const std::vector<const DenseTensor *> &ins_tensor, Array *ins_data) {
538
    (*ins_data)[Index] = (const _ptr_ char *)(ins_tensor[Index]->data());
539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
  }
};

template <int Index, int VecSize>
struct VecSizeGetter {
  template <typename ArgsT>
  static HOSTDEVICE void Apply(const std::vector<const DenseTensor *> &ins,
                               const ArgsT &args,
                               int *vec_size) {
    using Type = std::tuple_element_t<Index, ArgsT>;
    *vec_size = std::min<int>(
        *vec_size,
        paddle::platform::GetVectorizedSize(ins[Index]->data<Type>()));
  }
};

template <typename OutT, typename Functor>
556 557
int GetVectorizedSizeForTensors(const std::vector<const DenseTensor *> &ins,
                                const std::vector<DenseTensor *> &outs) {
558 559 560
  using Traits = paddle::platform::FunctionTraits<Functor>;
  using ArgsT = typename Traits::ArgsTuple;
  const int Arity = Traits::arity;
561
  int vec_size = 4;
562 563 564
  ArgsT arg;
  // The Arg VecSize=1 is to match the Unroller template.
  Unroller<VecSizeGetter, 1, Arity>::step(ins, arg, &vec_size);
565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
  for (auto iter = outs.begin(); iter != outs.end(); ++iter) {
    vec_size = std::min<int>(
        vec_size, paddle::platform::GetVectorizedSize((*iter)->data<OutT>()));
  }
  return vec_size;
}

template <typename InT,
          typename OutT,
          int VecSize,
          typename Functor,
          int Arity,
          bool CallElementwiseAny = false>
struct ElementwisePrimitiveCaller {
  __device__ inline void operator()(Functor func,
                                    InT (*args)[VecSize],
                                    OutT *result);
};

template <typename InT, typename OutT, int VecSize, typename Functor, int Arity>
struct ElementwisePrimitiveCaller<InT, OutT, VecSize, Functor, Arity, true> {
  __device__ inline void operator()(Functor func,
                                    InT (*args)[VecSize],
                                    OutT *result) {
    kps::ElementwiseAny<InT, OutT, VecSize, 1, 1, Arity, Functor>(
        result, args, func);
  }
};

594 595 596 597 598
template <typename InT, typename OutT, int VecSize, typename Functor>
struct ElementwisePrimitiveCaller<InT, OutT, VecSize, Functor, 0, false> {
  __device__ inline void operator()(Functor func,
                                    InT (*args)[VecSize],
                                    OutT *result) {
599
    kps::ElementwiseConstant<InT, OutT, VecSize, 1, 1, Functor>(result, func);
600 601 602
  }
};

603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
template <typename InT, typename OutT, int VecSize, typename Functor>
struct ElementwisePrimitiveCaller<InT, OutT, VecSize, Functor, 1, false> {
  __device__ inline void operator()(Functor func,
                                    InT (*args)[VecSize],
                                    OutT *result) {
    kps::ElementwiseUnary<InT, OutT, VecSize, 1, 1, Functor>(
        result, args[0], func);
  }
};

template <typename InT, typename OutT, int VecSize, typename Functor>
struct ElementwisePrimitiveCaller<InT, OutT, VecSize, Functor, 2, false> {
  __device__ inline void operator()(Functor func,
                                    InT (*args)[VecSize],
                                    OutT *result) {
    kps::ElementwiseBinary<InT, OutT, VecSize, 1, 1, Functor>(
        result, args[0], args[1], func);
  }
};

template <typename InT, typename OutT, int VecSize, typename Functor>
struct ElementwisePrimitiveCaller<InT, OutT, VecSize, Functor, 3, false> {
  __device__ inline void operator()(Functor func,
                                    InT (*args)[VecSize],
                                    OutT *result) {
    kps::ElementwiseTernary<InT, OutT, VecSize, 1, 1, Functor>(
        result, args[0], args[1], args[2], func);
  }
};

633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665
namespace detail {
template <class F, class Tuple, std::size_t... Index>
// GCC/Clang need the decltype() return type
HOSTDEVICE constexpr decltype(auto) ApplyImpl(F &&f,
                                              Tuple &&t,
                                              std::index_sequence<Index...>) {
  return std::forward<F>(f)(std::get<Index>(std::forward<Tuple>(t))...);
}
}  // namespace detail

template <class F, class Tuple>
HOSTDEVICE constexpr decltype(auto) Apply(F &&f, Tuple &&t) {
  return detail::ApplyImpl(
      std::forward<F>(f),
      std::forward<Tuple>(t),
      std::make_index_sequence<
          std::tuple_size<std::remove_reference_t<Tuple>>::value>{});
}

template <typename OutT,
          int VecSize,
          typename Functor,
          typename ArgsT,
          int Arity>
struct SameDimsElementwisePrimitiveCaller {
  __device__ inline void operator()(Functor func, ArgsT *args, OutT *result) {
#pragma unroll
    for (int idx = 0; idx < VecSize; ++idx) {
      result[idx] = static_cast<OutT>(Apply(func, args[idx]));
    }
  }
};

666 667 668
template <typename OutT, int VecSize, bool IsBoundary, int NumOuts>
struct ElementwiseWriteDataCaller {
  __device__ __forceinline__ void operator()(
669
      phi::Array<_ptr_ OutT *, NumOuts> outs,
670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
      ConditionalT<OutT, NumOuts> src[VecSize],
      int block_offset,
      int num) {
    OutT dst[NumOuts][VecSize];
#pragma unroll
    for (int i = 0; i < VecSize; ++i) {
#pragma unroll
      for (int j = 0; j < NumOuts; ++j) {
        dst[j][i] = (src[i])[j];
      }
    }
#pragma unroll
    for (int i = 0; i < NumOuts; ++i) {
      kps::WriteData<OutT, VecSize, 1, 1, IsBoundary>(
          outs[i] + block_offset, dst[i], num);
    }
  }
};

template <typename OutT, int VecSize, bool IsBoundary>
struct ElementwiseWriteDataCaller<OutT, VecSize, IsBoundary, 1> {
691
  __device__ __forceinline__ void operator()(phi::Array<_ptr_ OutT *, 1> outs,
692 693 694
                                             OutT src[VecSize],
                                             int block_offset,
                                             int num) {
695 696 697 698 699
    kps::WriteData<OutT, VecSize, 1, 1, IsBoundary>(
        outs[0] + block_offset, src, num);
  }
};

700
template <typename OutT,
701 702 703 704 705 706
          typename Functor,
          int Arity,
          int NumOuts,
          int VecSize,
          bool IsBoundary>
__device__ void VectorizedElementwiseKernelImpl(
707

708 709
    const phi::Array<const _ptr_ char *__restrict__, Arity> &in,
    phi::Array<_ptr_ OutT *, NumOuts> outs,
710 711 712
    int num,
    int data_offset,
    Functor func) {
713 714 715
  using Traits = paddle::platform::FunctionTraits<Functor>;
  using ArgsT = typename Traits::ArgsTuple;
  ArgsT args[VecSize];
716 717
  ConditionalT<OutT, NumOuts> result[VecSize];

718 719
  Unroller<Loader, VecSize, Arity>::step(
      in, args, num, data_offset, IsBoundary);
720

721 722 723 724 725
  SameDimsElementwisePrimitiveCaller<ConditionalT<OutT, NumOuts>,
                                     VecSize,
                                     Functor,
                                     ArgsT,
                                     Arity>()(func, args, result);
726 727 728 729 730

  ElementwiseWriteDataCaller<OutT, VecSize, IsBoundary, NumOuts>()(
      outs, result, data_offset, num);
}

731
template <typename OutT, typename Functor, int Arity, int NumOuts, int VecSize>
732
__global__ void VectorizedElementwiseKernel(
733 734
    phi::Array<const _ptr_ char *__restrict__, Arity> ins,
    phi::Array<_ptr_ OutT *, NumOuts> outs,
735 736 737 738 739 740
    int size,
    int main_offset,
    Functor func) {
  int data_offset = BLOCK_ID_X * BLOCK_NUM_X * VecSize;
  int stride = BLOCK_NUM_X * GRID_NUM_X * VecSize;
  for (; data_offset < main_offset; data_offset += stride) {
741
    VectorizedElementwiseKernelImpl<OutT,
742 743 744 745 746 747 748 749 750 751
                                    Functor,
                                    Arity,
                                    NumOuts,
                                    VecSize,
                                    false>(
        ins, outs, VecSize * BLOCK_NUM_X, data_offset, func);
  }

  int num = size - data_offset;
  if (num > 0) {
752
    VectorizedElementwiseKernelImpl<OutT,
753 754 755 756 757 758 759 760
                                    Functor,
                                    Arity,
                                    NumOuts,
                                    VecSize,
                                    true>(ins, outs, num, data_offset, func);
  }
}

761
template <typename OutT, typename Functor, int Arity, int NumOuts, int VecSize>
762 763 764 765
void ElementwiseCudaKernel(const KPDevice &ctx,
                           const std::vector<const DenseTensor *> &ins,
                           std::vector<DenseTensor *> *outs,
                           Functor func) {
766 767
  auto numel =
      (*outs)[0]->numel();  // To avoid running errors when ins.size()== 0
768 769
  phi::Array<const _ptr_ char *__restrict__, Arity> ins_data;
  phi::Array<_ptr_ OutT *, NumOuts> outs_data;
770

771
  Unroller<InputSetter, VecSize, Arity>::step(ins, &ins_data);
772
  for (int i = 0; i < NumOuts; ++i) {
773
    outs_data[i] = (_ptr_ OutT *)(ctx.Alloc<OutT>((*outs)[i]));
774
  }
775
#ifdef PADDLE_WITH_XPU_KP
776 777 778 779
  int block_size = 64;
  int grid_size = 8;
  auto stream = ctx.x_context()->xpu_stream;
  int main_offset = (numel / (VecSize * block_size)) * VecSize * block_size;
780
  VectorizedElementwiseKernel<OutT,
781 782 783 784 785 786
                              Functor,
                              Arity,
                              NumOuts,
                              VecSize><<<grid_size, block_size, 0, stream>>>(
      ins_data, outs_data, numel, main_offset, func);
#else
W
Wilber 已提交
787
  auto gpu_config =
788
      phi::backends::gpu::GetGpuLaunchConfig1D(ctx, numel, VecSize);
789 790 791
  int main_offset = (numel / (VecSize * gpu_config.GetBlockSize())) * VecSize *
                    gpu_config.GetBlockSize();
  auto stream = ctx.stream();
792
  VectorizedElementwiseKernel<OutT, Functor, Arity, NumOuts, VecSize><<<
793 794 795 796 797 798 799
      gpu_config.block_per_grid,
      gpu_config.thread_per_block,
      0,
      stream>>>(ins_data, outs_data, numel, main_offset, func);
#endif
}

800
template <typename OutT, typename Functor, int NumOuts = 1>
801 802 803 804
void ElementwiseKernel(const KPDevice &ctx,
                       const std::vector<const DenseTensor *> &ins,
                       std::vector<DenseTensor *> *outs,
                       Functor func) {
805
  using Traits = paddle::platform::FunctionTraits<Functor>;
806
  const int kArity = Traits::arity;
807 808
  PADDLE_ENFORCE_EQ(ins.size(),
                    kArity,
809
                    phi::errors::InvalidArgument(
810 811 812 813 814 815 816
                        "The number of inputs is expected to be equal to the "
                        "arity of functor. But recieved: the number of inputs "
                        "is %d, the arity of functor is %d.",
                        ins.size(),
                        kArity));
  PADDLE_ENFORCE_EQ(outs->size(),
                    NumOuts,
817
                    phi::errors::InvalidArgument(
818 819 820 821 822 823 824 825 826 827
                        "Number of outputs shall equal to number of functions, "
                        "but number of outputs is %d, of functions is %d.",
                        outs->size(),
                        NumOuts));

  if (NumOuts > 1) {
    for (int i = 1; i < NumOuts; ++i) {
      PADDLE_ENFORCE_EQ(
          (*outs)[i]->dims(),
          (*outs)[0]->dims(),
828
          phi::errors::InvalidArgument(
829 830 831 832 833 834 835
              "The shape of each output tensor shall be identical yet, "
              "but %dth output tensor`s shape is not.",
              i));
    }
  }

  // calculate the max vec_size for all ins and outs
836
  int vec_size = GetVectorizedSizeForTensors<OutT, Functor>(ins, *outs);
837 838
  switch (vec_size) {
    case 4:
839
      ElementwiseCudaKernel<OutT, Functor, kArity, NumOuts, 4>(
840 841 842
          ctx, ins, outs, func);
      break;
    case 2:
843
      ElementwiseCudaKernel<OutT, Functor, kArity, NumOuts, 2>(
844 845 846
          ctx, ins, outs, func);
      break;
    case 1:
847
      ElementwiseCudaKernel<OutT, Functor, kArity, NumOuts, 1>(
848 849 850
          ctx, ins, outs, func);
      break;
    default: {
851
      PADDLE_THROW(phi::errors::Unimplemented(
852 853 854 855 856
          "Unsupported vectorized size: %d !", vec_size));
      break;
    }
  }
}
857

858 859
#endif

860
}  // namespace funcs
861
}  // namespace phi