pool_with_index_op.cc 13.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
C
chengduoZH 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/pool_with_index_op.h"
C
chengduoZH 已提交
16 17 18 19

namespace paddle {
namespace operators {

Y
Yang Yang 已提交
20
inline int MaxPoolOutputSize(int input_size, int filter_size, int padding,
C
chengduoZH 已提交
21
                             int stride) {
C
chengduoZH 已提交
22 23 24 25 26 27 28 29
  int output_size = (input_size - filter_size + 2 * padding) / stride + 1;
  return output_size;
}

class MaxPoolWithIndexOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

C
fix doc  
chengduoZH 已提交
30
  void InferShape(framework::InferShapeContext *ctx) const override {
C
chengduoZH 已提交
31
    PADDLE_ENFORCE(ctx->HasInput("X"),
C
chengduoZH 已提交
32
                   "Input(X) of Pooling should not be null.");
C
chengduoZH 已提交
33
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
C
chengduoZH 已提交
34
                   "Output(Out) of Pooling should not be null.");
C
chengduoZH 已提交
35
    PADDLE_ENFORCE(ctx->HasOutput("Mask"),
C
chengduoZH 已提交
36
                   "Output(Mask) of Pooling should not be null.");
C
chengduoZH 已提交
37 38 39 40 41 42

    auto in_x_dims = ctx->GetInputDim("X");

    std::vector<int> ksize = ctx->Attrs().Get<std::vector<int>>("ksize");
    std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
    std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
43
    bool adaptive = ctx->Attrs().Get<bool>("adaptive");
C
chengduoZH 已提交
44 45

    PADDLE_ENFORCE(in_x_dims.size() == 4 || in_x_dims.size() == 5,
C
chengduoZH 已提交
46
                   "Pooling intput should be 4-D or 5-D tensor.");
C
chengduoZH 已提交
47

C
chengduoZH 已提交
48
    if (ctx->Attrs().Get<bool>("global_pooling")) {
C
chengduoZH 已提交
49
      ksize.resize(static_cast<size_t>(in_x_dims.size()) - 2);
C
fix bug  
chengduoZH 已提交
50 51
      for (size_t i = 0; i < ksize.size(); ++i) {
        paddings[i] = 0;
C
chengduoZH 已提交
52
        ksize[i] = static_cast<int>(in_x_dims[i + 2]);
C
fix bug  
chengduoZH 已提交
53
      }
C
chengduoZH 已提交
54 55 56
    }

    PADDLE_ENFORCE(in_x_dims.size() - ksize.size() == 2U,
C
fix doc  
chengduoZH 已提交
57
                   "Input size and pooling size should be consistent.");
C
chengduoZH 已提交
58
    PADDLE_ENFORCE_EQ(ksize.size(), strides.size(),
C
chengduoZH 已提交
59
                      "Strides size and pooling size should be the same.");
C
chengduoZH 已提交
60
    PADDLE_ENFORCE_EQ(ksize.size(), paddings.size(),
C
chengduoZH 已提交
61
                      "Paddings size and pooling size should be the same.");
C
chengduoZH 已提交
62 63

    std::vector<int64_t> output_shape({in_x_dims[0], in_x_dims[1]});
64 65 66 67 68 69 70
    if (adaptive) {
      output_shape.insert(output_shape.end(), ksize.begin(), ksize.end());
    } else {
      for (size_t i = 0; i < ksize.size(); ++i) {
        output_shape.push_back(MaxPoolOutputSize(in_x_dims[i + 2], ksize[i],
                                                 paddings[i], strides[i]));
      }
C
chengduoZH 已提交
71 72 73 74
    }
    ctx->SetOutputDim("Out", framework::make_ddim(output_shape));
    ctx->SetOutputDim("Mask", framework::make_ddim(output_shape));
  }
C
chengduoZH 已提交
75 76

 protected:
77
  framework::OpKernelType GetExpectedKernelType(
C
chengduoZH 已提交
78
      const framework::ExecutionContext &ctx) const override {
79 80 81
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        ctx.device_context());
C
chengduoZH 已提交
82
  }
C
chengduoZH 已提交
83 84 85 86 87 88
};

class MaxPoolWithIndexOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

C
fix doc  
chengduoZH 已提交
89
  void InferShape(framework::InferShapeContext *ctx) const override {
90
    PADDLE_ENFORCE(ctx->HasInput("Mask"), "Input(Mask) must not be null.");
C
chengduoZH 已提交
91
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) must not be null.");
C
chengduoZH 已提交
92 93
    PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")),
                   "Input(X@GRAD) should not be null.");
C
chengduoZH 已提交
94 95
    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
  }
C
chengduoZH 已提交
96 97

 protected:
98
  framework::OpKernelType GetExpectedKernelType(
C
chengduoZH 已提交
99
      const framework::ExecutionContext &ctx) const override {
100 101 102
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        ctx.device_context());
C
chengduoZH 已提交
103
  }
C
chengduoZH 已提交
104 105 106 107
};

class MaxPool2dWithIndexOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
108
  void Make() override {
C
chengduoZH 已提交
109 110
    AddInput(
        "X",
K
kexinzhao 已提交
111 112 113 114
        "(Tensor) The input tensor of pooling operator. "
        "The format of input tensor is NCHW, where N is batch size, C is the "
        "number of channels, H is the height of the image, "
        "and W is the width of the image.");
C
chengduoZH 已提交
115
    AddOutput("Out",
K
kexinzhao 已提交
116 117 118 119 120
              "(Tensor) The output tensor of pooling operator. "
              "The format of output tensor is also NCHW, "
              "where N is batch size, C is "
              "the number of channels, H is the height of the image "
              "and W is the width of the image.");
C
chengduoZH 已提交
121
    AddOutput("Mask",
K
kexinzhao 已提交
122 123 124 125 126 127
              "(Tensor) The Mask tensor of pooling operator."
              "The format of output tensor is also NCHW, "
              "where N is batch size, C is the number of channels, "
              "H is the height of the image, "
              "and W is the width of the image. "
              "It represents the index in the current feature map.");
C
chengduoZH 已提交
128

C
fix bug  
chengduoZH 已提交
129
    AddAttr<std::vector<int>>("ksize",
K
kexinzhao 已提交
130 131
                              "(vector<int>) The pooling window size(height, "
                              "width) of pooling operator. "
C
chengduoZH 已提交
132
                              "If global_pooling = true, ksize and paddings "
C
fix bug  
chengduoZH 已提交
133 134
                              "will be ignored.");  // TODO(Chengduo): Add
                                                    // checker. (Currently,
C
fix doc  
chengduoZH 已提交
135
    // TypedAttrChecker don't support vector type.)
C
fix bug  
chengduoZH 已提交
136
    AddAttr<bool>(
C
chengduoZH 已提交
137
        "global_pooling",
C
chengduoZH 已提交
138
        "(bool, default:false) Whether to use the global pooling. "
C
chengduoZH 已提交
139
        "If global_pooling = true, ksize and paddings will be ignored.")
C
chengduoZH 已提交
140
        .SetDefault(false);
141 142 143 144 145 146 147 148
    AddAttr<bool>(
        "adaptive",
        "(bool, default False) When true, will perform adaptive pooling "
        "instead, "
        "output shape in H and W dimensions will be same as ksize, input data "
        "will be divided into grids specify by ksize averagely and perform "
        "pooling in each grid area to get output pooling value.")
        .SetDefault(false);
K
kexinzhao 已提交
149 150 151
    AddAttr<std::vector<int>>("strides",
                              "(vector<int>, default {1, 1}), strides(height, "
                              "width) of pooling operator.")
C
chengduoZH 已提交
152
        .SetDefault({1, 1});  // TODO(Chengduo): Add checker. (Currently,
C
fix doc  
chengduoZH 已提交
153
    // TypedAttrChecker don't support vector type.)
C
chengduoZH 已提交
154 155
    AddAttr<std::vector<int>>(
        "paddings",
C
chengduoZH 已提交
156
        "(vector<int>, default:{0, 0}), paddings(height, width) of pooling "
K
kexinzhao 已提交
157
        "operator. "
C
chengduoZH 已提交
158
        "If global_pooling = true, paddings and will be ignored.")
C
chengduoZH 已提交
159
        .SetDefault({0, 0});  // TODO(Chengduo): Add checker. (Currently,
C
fix doc  
chengduoZH 已提交
160
    // TypedAttrChecker don't support vector type.)
C
chengduoZH 已提交
161 162

    AddComment(R"DOC(
K
kexinzhao 已提交
163 164
MaxPool2d Operator.

C
chengduoZH 已提交
165
The maxPooling2d with index operation calculates the output and the mask
K
kexinzhao 已提交
166 167 168 169
based on the input, ksize, strides, and paddings parameters. Input(X) and
output(Out, Mask) are in NCHW format, where N is batch size, C is the
number of channels, H is the height of the feature, 
and W is the width of the feature.
C
chengduoZH 已提交
170 171
Parameters(ksize, strides, paddings) are two elements.
These two elements represent height and width, respectively.
C
chengduoZH 已提交
172 173 174 175
The input(X) size and output(Out, Mask) size may be different.

Example:
  Input:
K
kexinzhao 已提交
176
       X shape: $(N, C, H_{in}, W_{in})$
C
chengduoZH 已提交
177
  Output:
K
kexinzhao 已提交
178 179
       Out shape: $(N, C, H_{out}, W_{out})$
       Mask shape: $(N, C, H_{out}, W_{out})$
C
chengduoZH 已提交
180
  Where
K
kexinzhao 已提交
181
       $$
C
chengduoZH 已提交
182 183
       H_{out} = \frac{(H_{in} - ksize[0] + 2 * paddings[0])}{strides[0]} + 1 \\
       W_{out} = \frac{(W_{in} - ksize[1] + 2 * paddings[1])}{strides[1]} + 1
K
kexinzhao 已提交
184
       $$
185 186 187 188 189 190
  
  For adaptive = true:
       $$
       H_{out} = ksize[0]   W_{out} = ksize[1]
       $$
      
K
kexinzhao 已提交
191

C
chengduoZH 已提交
192 193 194 195 196 197
)DOC");
  }
};

class MaxPool3dWithIndexOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
198
  void Make() override {
K
kexinzhao 已提交
199 200 201 202 203 204
    AddInput("X",
             "(Tensor) The input tensor of pooling operator. "
             "The format of input tensor is NCDHW, where N is batch size, C is "
             "the number of channels, and D, H and W are the depth, height and "
             "width of "
             "the image, respectively");
C
chengduoZH 已提交
205
    AddOutput("Out",
K
kexinzhao 已提交
206 207 208 209 210
              "(Tensor) The output tensor of pooling operator. "
              "The format of output tensor is also NCDHW, "
              "where N is the batch size, C is the number of channels, "
              "and D, H and W are the depth, height and "
              "width of the image, respectively.");
C
chengduoZH 已提交
211
    AddOutput("Mask",
K
kexinzhao 已提交
212 213 214 215 216 217
              "(Tensor) The Mask tensor of pooling operator. "
              "The format of output tensor is also NCDHW, "
              "where N is the batch size, C is the number of channels, and "
              "D, H and W are the depth, height and width "
              "of the image, respectively. "
              "It represents the index in the current feature map.");
C
chengduoZH 已提交
218

C
fix bug  
chengduoZH 已提交
219
    AddAttr<std::vector<int>>("ksize",
K
kexinzhao 已提交
220 221
                              "(vector<int>) The pooling window size(depth, "
                              "height, width) of pooling operator. "
C
chengduoZH 已提交
222
                              "If global_pooling = true, ksize and paddings "
C
fix bug  
chengduoZH 已提交
223 224
                              "will be ignored.");  // TODO(Chengduo): Add
                                                    // checker. (Currently,
C
fix doc  
chengduoZH 已提交
225
    // TypedAttrChecker don't support vector type.)
C
fix bug  
chengduoZH 已提交
226
    AddAttr<bool>(
C
chengduoZH 已提交
227
        "global_pooling",
K
kexinzhao 已提交
228
        "(bool, default false) Whether to use the global pooling. "
C
chengduoZH 已提交
229
        "If global_pooling = true, ksize and paddings will be ignored.")
C
chengduoZH 已提交
230
        .SetDefault(false);
231 232 233 234 235 236 237 238
    AddAttr<bool>(
        "adaptive",
        "(bool, default False) When true, will perform adaptive pooling "
        "instead, "
        "output shape in H and W dimensions will be same as ksize, input data "
        "will be divided into grids specify by ksize averagely and perform "
        "pooling in each grid area to get output pooling value.")
        .SetDefault(false);
C
fix doc  
chengduoZH 已提交
239
    AddAttr<std::vector<int>>("strides",
K
kexinzhao 已提交
240
                              "(vector<int>, default {1,1,1}), strides(depth, "
C
fix doc  
chengduoZH 已提交
241
                              "height, width) of pooling operator.")
C
chengduoZH 已提交
242
        .SetDefault({1, 1, 1});  // TODO(Chengduo): Add checker. (Currently,
C
fix doc  
chengduoZH 已提交
243
    // TypedAttrChecker don't support vector type.)
C
fix bug  
chengduoZH 已提交
244 245
    AddAttr<std::vector<int>>(
        "paddings",
C
chengduoZH 已提交
246
        "(vector, default {0,0,0}), paddings(depth, "
K
kexinzhao 已提交
247
        "height, width) of pooling operator. "
C
chengduoZH 已提交
248
        "If global_pooling = true, paddings and ksize will be ignored.")
C
chengduoZH 已提交
249
        .SetDefault({0, 0, 0});  // TODO(Chengduo): Add checker. (Currently,
C
fix doc  
chengduoZH 已提交
250
    // TypedAttrChecker don't support vector type.)
C
chengduoZH 已提交
251

C
chengduoZH 已提交
252
    AddComment(R"DOC(
K
kexinzhao 已提交
253 254
MaxPool3d Operator.

C
chengduoZH 已提交
255 256
The maxpooling3d with index operation calculates the output and the mask
based on the input and ksize, strides, paddings parameters.
K
kexinzhao 已提交
257 258 259 260
Input(X) and output(Out, Mask) are in NCDHW format, where N is batch
size, C is the number of channels, and D, H and W are the depth, height and
width of the feature, respectively. 
Parameters(ksize, strides, paddings) are three elements.
C
chengduoZH 已提交
261
These three elements represent depth, height and width, respectively.
C
chengduoZH 已提交
262 263 264 265
The input(X) size and output(Out, Mask) size may be different.

Example:
  Input:
K
kexinzhao 已提交
266
       X shape: $(N, C, D_{in}, H_{in}, W_{in})$
C
chengduoZH 已提交
267
  Output:
K
kexinzhao 已提交
268 269
       Out shape: $(N, C, D_{out}, H_{out}, W_{out})$
       Mask shape: $(N, C, D_{out}, H_{out}, W_{out})$
C
chengduoZH 已提交
270
  Where
K
kexinzhao 已提交
271
       $$
C
chengduoZH 已提交
272 273 274
       D_{out} = \frac{(D_{in} - ksize[0] + 2 * paddings[0])}{strides[0]} + 1 \\
       H_{out} = \frac{(H_{in} - ksize[1] + 2 * paddings[1])}{strides[1]} + 1 \\
       W_{out} = \frac{(W_{in} - ksize[2] + 2 * paddings[2])}{strides[2]} + 1
K
kexinzhao 已提交
275
       $$
276 277 278 279 280
  
  For adaptive = true:
       $$
       D_{out} = ksize[0]   H_{out} = ksize[1]   W_{out} = ksize[2]
       $$
K
kexinzhao 已提交
281

C
chengduoZH 已提交
282 283 284
)DOC");
  }
};
C
chengduoZH 已提交
285

C
chengduoZH 已提交
286 287 288 289 290
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

H
hong 已提交
291 292 293 294 295
REGISTER_OPERATOR(
    max_pool2d_with_index, ops::MaxPoolWithIndexOp,
    ops::MaxPool2dWithIndexOpMaker,
    paddle::framework::DefaultGradOpMaker<paddle::framework::OpDesc, true>,
    paddle::framework::DefaultGradOpMaker<paddle::imperative::OpBase, true>);
296
REGISTER_OPERATOR(max_pool2d_with_index_grad, ops::MaxPoolWithIndexOpGrad);
C
chengduoZH 已提交
297 298

REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
299
    max_pool2d_with_index,
Q
QI JUN 已提交
300 301 302
    ops::MaxPoolWithIndexKernel<paddle::platform::CPUDeviceContext, float, int>,
    ops::MaxPoolWithIndexKernel<paddle::platform::CPUDeviceContext, double,
                                int>);
C
chengduoZH 已提交
303
REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
304
    max_pool2d_with_index_grad,
Q
QI JUN 已提交
305 306 307
    ops::MaxPoolWithIndexGradKernel<paddle::platform::CPUDeviceContext, float,
                                    int>,
    ops::MaxPoolWithIndexGradKernel<paddle::platform::CPUDeviceContext, double,
308
                                    int>);
C
chengduoZH 已提交
309

H
hong 已提交
310 311 312 313 314
REGISTER_OPERATOR(
    max_pool3d_with_index, ops::MaxPoolWithIndexOp,
    ops::MaxPool3dWithIndexOpMaker,
    paddle::framework::DefaultGradOpMaker<paddle::framework::OpDesc, true>,
    paddle::framework::DefaultGradOpMaker<paddle::imperative::OpBase, true>);
315
REGISTER_OPERATOR(max_pool3d_with_index_grad, ops::MaxPoolWithIndexOpGrad);
C
chengduoZH 已提交
316 317

REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
318
    max_pool3d_with_index,
Q
QI JUN 已提交
319 320 321
    ops::MaxPoolWithIndexKernel<paddle::platform::CPUDeviceContext, float, int>,
    ops::MaxPoolWithIndexKernel<paddle::platform::CPUDeviceContext, double,
                                int>);
C
chengduoZH 已提交
322
REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
323
    max_pool3d_with_index_grad,
Q
QI JUN 已提交
324 325 326
    ops::MaxPoolWithIndexGradKernel<paddle::platform::CPUDeviceContext, float,
                                    int>,
    ops::MaxPoolWithIndexGradKernel<paddle::platform::CPUDeviceContext, double,
327
                                    int>);