edit_distance_op.cu 5.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

Y
Yibing Liu 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

Y
Yibing Liu 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

Y
Yibing Liu 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14 15

#include <algorithm>
Y
Yi Wang 已提交
16
#include "paddle/fluid/framework/op_registry.h"
17
#include "paddle/fluid/operators/edit_distance_op.h"
Y
Yi Wang 已提交
18 19 20
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/platform/cuda_helper.h"
#include "paddle/fluid/platform/gpu_info.h"
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43

namespace paddle {
namespace operators {

using platform::PADDLE_CUDA_NUM_THREADS;

template <typename T>
__global__ void FillFirstRow(T* dist, const int N) {
  int idx = blockDim.x * blockIdx.x + threadIdx.x;
  if (idx < N + 1) {
    dist[idx] = idx;
  }
}

template <typename T>
__global__ void FillFirstColumn(T* dist, const int M, const int N) {
  int idx = blockDim.x * blockIdx.x + threadIdx.x;
  if (idx < M + 1) {
    dist[idx * (N + 1)] = idx;
  }
}

template <typename T>
44 45
__global__ void Levenshtein(T* dist, const int64_t* x1, const int64_t* x2,
                            const int M, const int N, const int start) {
46 47 48 49 50 51 52 53 54 55 56 57 58 59
  int idx = blockDim.x * blockIdx.x + threadIdx.x;
  int offset = N;
  int index = start + idx * offset;
  int row = index / (N + 1);
  int col = index % (N + 1);
  if (row > 0 && col > 0 && row < M + 1 && col < N + 1) {
    int cost = x1[row - 1] == x2[col - 1] ? 0 : 1;
    int dels = dist[(row - 1) * (N + 1) + col] + 1;
    int ins = dist[row * (N + 1) + col - 1] + 1;
    int subs = dist[(row - 1) * (N + 1) + (col - 1)] + cost;
    dist[index] = min(dels, min(ins, subs));
  }
}

Y
Yibing Liu 已提交
60 61 62 63 64 65 66 67 68
template <typename T>
__global__ void SetOutput(T* out, const T* dist, const int M, const int N,
                          bool normalized) {
  int idx = blockDim.x * blockIdx.x + threadIdx.x;
  if (idx == 0) {
    out[0] = normalized ? dist[M * (N + 1) + N] / N : dist[M * (N + 1) + N];
  }
}

69
template <typename Place, typename T>
70
class EditDistanceGPUKernel : public framework::OpKernel<T> {
71 72 73 74
 public:
  void Compute(const framework::ExecutionContext& ctx) const {
    auto* out_t = ctx.Output<framework::Tensor>("Out");

75 76
    auto* x1_t = ctx.Input<framework::LoDTensor>("Hyps");
    auto* x2_t = ctx.Input<framework::LoDTensor>("Refs");
77 78
    auto* sequence_num = ctx.Output<framework::Tensor>("SequenceNum");
    sequence_num->mutable_data<int64_t>(ctx.GetPlace());
79 80 81 82 83 84

    auto normalized = ctx.Attr<bool>("normalized");
    auto stream = reinterpret_cast<const platform::CUDADeviceContext&>(
                      ctx.device_context())
                      .stream();

85 86 87 88 89 90 91 92 93 94
    auto hyp_lod = x1_t->lod()[0];
    auto ref_lod = x2_t->lod()[0];
    PADDLE_ENFORCE(
        hyp_lod.size() == ref_lod.size(),
        "Input(Hyps) and Input(Refs) must have the same batch size.");
    for (size_t i = 1; i < ref_lod.size(); ++i) {
      PADDLE_ENFORCE(ref_lod[i] > ref_lod[i - 1],
                     "Reference string %d is empty.", i);
    }

95 96 97 98 99
    const size_t num_strs = hyp_lod.size() - 1;
    math::SetConstant<platform::CUDADeviceContext, int64_t> set_constant;
    set_constant(ctx.template device_context<platform::CUDADeviceContext>(),
                 sequence_num, static_cast<int64_t>(num_strs));

100 101 102 103
    out_t->Resize({static_cast<int64_t>(num_strs), 1});
    out_t->mutable_data<T>(ctx.GetPlace());
    auto out = out_t->data<T>();

104
    T distance = 0.0;
105 106 107 108
    for (size_t num = 0; num < num_strs; num++) {
      auto m = static_cast<int64_t>(hyp_lod[num + 1] - hyp_lod[num]);
      auto n = static_cast<int64_t>(ref_lod[num + 1] - ref_lod[num]);
      if (m == 0 || n == 0) {
109
        distance = std::max(m, n);
110 111 112 113 114
        if (normalized) {
          PADDLE_ENFORCE(n > 0,
                         "The reference string (#%d) cannot be empty "
                         "when Attr(normalized) is enabled.",
                         n);
115
          distance = distance / n;
116 117
        }
        memory::Copy(boost::get<Place>(ctx.GetPlace()), out + num,
118
                     platform::CPUPlace(), &distance, sizeof(T), stream);
119 120 121 122 123
      } else {
        framework::Tensor dist_t;
        dist_t.Resize({m + 1, n + 1});
        dist_t.mutable_data<T>(ctx.GetPlace());
        auto dist = dist_t.data<T>();
124 125
        auto x1 = x1_t->data<int64_t>() + hyp_lod[num];
        auto x2 = x2_t->data<int64_t>() + ref_lod[num];
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144

        FillFirstColumn<T><<<1 + m / PADDLE_CUDA_NUM_THREADS,
                             PADDLE_CUDA_NUM_THREADS, 0, stream>>>(dist, m, n);

        FillFirstRow<T><<<1 + n / PADDLE_CUDA_NUM_THREADS,
                          PADDLE_CUDA_NUM_THREADS, 0, stream>>>(dist, n);
        // Compute the elements of distance matrix in the anti-diagonal diretion
        for (int64_t slice = 2; slice < m + n + 1; ++slice) {
          int z_m = slice < m + 1 ? 0 : slice - m;
          int z_n = slice < n + 1 ? 0 : slice - n;
          int size = slice - (z_m + z_n) + 1;  // number of elments in the same
                                               // anti-diagonal line to update
          // the start index at which computes from
          int start = slice < n + 1 ? slice : (z_n + 1) * (n + 1) - 1;
          Levenshtein<T><<<1 + (size - 1) / PADDLE_CUDA_NUM_THREADS,
                           PADDLE_CUDA_NUM_THREADS, 0, stream>>>(dist, x1, x2,
                                                                 m, n, start);
        }
        SetOutput<T><<<1, 1, 0, stream>>>(out + num, dist, m, n, normalized);
145 146 147 148 149 150 151 152 153 154
      }
    }
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

155 156 157
REGISTER_OP_CUDA_KERNEL(
    edit_distance,
    ops::EditDistanceGPUKernel<paddle::platform::CUDAPlace, float>);