dygraph_group_sharded_api.py 4.6 KB
Newer Older
B
Baibaifan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
# 
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# 
#     http://www.apache.org/licenses/LICENSE-2.0
# 
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import time
import shutil
import tempfile
import numpy as np

import paddle
import paddle.fluid as fluid
from paddle.fluid.dygraph.nn import Linear
from paddle.distributed import fleet
from paddle.fluid.dygraph import nn
B
Baibaifan 已提交
25
from paddle.fluid.framework import _test_eager_guard
B
Baibaifan 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
from paddle.distributed.sharding import group_sharded_parallel, save_group_sharded_model

epoch = 10
paddle.seed(2022)
np.random.seed(2022)
base_lr = 0.1
momentum_rate = 0.9
l2_decay = 1e-4
batch_size = 100
fleet.init(is_collective=True)


class MLP(fluid.Layer):
    def __init__(self, linear_size=1000, param_attr=None, bias_attr=None):
        super(MLP, self).__init__()

        self._linear1 = Linear(linear_size, linear_size)
        self._linear2 = Linear(linear_size, linear_size)
        self._linear3 = Linear(linear_size, 10)

    def forward(self, inputs):
        y = self._linear1(inputs)
        y = self._linear2(y)
        y = self._linear3(y)
        return y


def reader_decorator(linear_size=1000):
    def __reader__():
        for _ in range(100):
            img = np.random.rand(linear_size).astype('float32')
            label = np.ones(1).astype('int64')
            yield img, label

    return __reader__


def optimizer_setting(model, use_pure_fp16, opt_group=False):
    clip = paddle.nn.ClipGradByGlobalNorm(clip_norm=1.0)
    optimizer = paddle.optimizer.Momentum(
        parameters=[{
            "params": list(model.parameters())
        }] if opt_group else list(model.parameters()),
        learning_rate=0.001,
        weight_decay=0.00001,
        grad_clip=clip,
        multi_precision=use_pure_fp16)

    return optimizer


def train_mlp(model, shard_level, use_pure_fp16, output_dir):
    group = paddle.distributed.new_group([0, 1])

    optimizer = optimizer_setting(model=model, use_pure_fp16=use_pure_fp16)
    model = paddle.amp.decorate(models=model, level='O2', save_dtype='float32')
    scaler = paddle.amp.GradScaler(init_loss_scaling=32768)

    model, optimizer, scaler = group_sharded_parallel(
        model=model, optimizer=optimizer, level=shard_level, scaler=scaler)

    train_reader = paddle.batch(
        reader_decorator(), batch_size=batch_size, drop_last=True)

    train_loader = paddle.io.DataLoader.from_generator(
        capacity=32,
        use_double_buffer=True,
        iterable=True,
        return_list=True,
        use_multiprocess=True)
    train_loader.set_sample_list_generator(train_reader)

    for eop in range(epoch):
        model.train()
        for batch_id, data in enumerate(train_loader()):
            img, label = data
            label.stop_gradient = True
            img.stop_gradient = True
            with paddle.amp.auto_cast(True, level='O2'):
                out = model(img)
                loss = paddle.nn.functional.cross_entropy(
                    input=out, label=label)
            avg_loss = paddle.mean(x=loss.cast(dtype=paddle.float32))

            if not use_pure_fp16:
                avg_loss.backward()
                optimizer.step()
            else:
                scaler.scale(avg_loss).backward()
                scaler.step(optimizer)
                scaler.update()

            optimizer.clear_grad()

    save_group_sharded_model(model, output=output_dir, optimizer=optimizer)
    return model.parameters()


def test_sharding_api():
    mlp, mlp1, mlp2 = MLP(), MLP(), MLP()
    state_dict = mlp.state_dict()
    mlp1.set_state_dict(state_dict)
    mlp2.set_state_dict(state_dict)

    output_dir = tempfile.mkdtemp()

    # fp16
    stage2_params = train_mlp(
        mlp1, shard_level="os_g", use_pure_fp16=True, output_dir=output_dir)
    stage3_params = train_mlp(
        mlp2, shard_level="p_g_os", use_pure_fp16=True, output_dir=output_dir)

    for i in range(len(stage3_params)):
        np.testing.assert_allclose(
            stage2_params[i].numpy(),
            stage3_params[i].numpy(),
            rtol=1e-4,
            atol=1e-3)
    shutil.rmtree(output_dir)


if __name__ == '__main__':
B
Baibaifan 已提交
148 149
    with _test_eager_guard():
        pass
B
Baibaifan 已提交
150
    test_sharding_api()