fc_op.cc 5.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"

namespace paddle {
namespace inference {
namespace tensorrt {

// Reorder the elements from istrides to ostrides, borrowed from TRT convert in
// tensorflow.
// https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/tensorrt/convert/convert_nodes.cc#L318
template <typename T>
void Reorder2(nvinfer1::DimsHW shape, const T* idata, nvinfer1::DimsHW istrides,
              T* odata, nvinfer1::DimsHW ostrides) {
  for (int h = 0; h < shape.h(); ++h) {
    for (int w = 0; w < shape.w(); ++w) {
      odata[h * ostrides.h() + w * ostrides.w()] =
30
          idata[h * istrides.h() + w * istrides.w()];
31 32 33
    }
  }
}
34
// indata c * k
35
// Reorder the data layout from CK to KC.
G
gongweibao 已提交
36
void ReorderCKtoKC(TensorRTEngine::Weight& iweights,  // NOLINT
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
                   TensorRTEngine::Weight* oweights) {
  int c = iweights.dims[0];
  int k = iweights.dims[1];
  oweights->dims.assign({k, c});
  nvinfer1::DimsHW istrides = {1, k};
  nvinfer1::DimsHW ostrides = {c, 1};
  Reorder2({k, c}, static_cast<float const*>(iweights.get().values), istrides,
           static_cast<float*>(const_cast<void*>(oweights->get().values)),
           ostrides);
}

/*
 * FC converter convert a MUL op in Fluid to a FC layer in TRT.
 */
class FcOpConverter : public OpConverter {
 public:
  void operator()(const framework::proto::OpDesc& op,
54
                  const framework::Scope& scope, bool test_mode) override {
55
    VLOG(3) << "convert a fluid fc op to tensorrt fc layer without bias";
Y
Yan Chunwei 已提交
56
    framework::OpDesc op_desc(op, nullptr);
57 58 59 60 61 62 63 64 65

    auto input_names = op_desc.InputNames();
    bool with_bias = input_names.size() >= 3;
    std::string w_name = "Y";
    std::string i_name = "X";
    if (with_bias) {
      w_name = "W";
      i_name = "Input";
    }
66 67

    // Declare inputs
68
    auto* X = engine_->GetITensor(op_desc.Input(i_name).front());
69 70

    // Declare weights
71
    auto* Y_v = scope.FindVar(op_desc.Input(w_name).front());
72 73 74 75
    PADDLE_ENFORCE_NOT_NULL(Y_v);
    auto* Y_t = Y_v->GetMutable<framework::LoDTensor>();
    // This may trigger a GPU->CPU copy, because TRT's weight can only be
    // assigned from CPU memory, that can't be avoided.
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
    float* weight_data = nullptr;
    bool enable_int8 = boost::get<bool>(op_desc.HasAttr("enable_int8"));
    if (enable_int8) {
#if IS_TRT_VERSION_GE(5000)
      float in_scale = boost::get<float>(op_desc.GetAttr("input_scale"));
      auto weight_scale =
          boost::get<std::vector<float>>(op_desc.GetAttr("weight_scale"));
      weight_data = engine_->GetWeightCPUData(op_desc.Input(w_name).front(),
                                              Y_t, true, weight_scale);
      engine_->SetTensorDynamicRange(X, in_scale);
#endif
    } else {
      weight_data =
          engine_->GetWeightCPUData(op_desc.Input(w_name).front(), Y_t, false);
    }
N
nhzlx 已提交
91

92 93
    PADDLE_ENFORCE_EQ(Y_t->dims().size(), 2UL);  // a matrix
    size_t n_output = Y_t->dims()[1];
N
nhzlx 已提交
94

N
nhzlx 已提交
95
    std::unique_ptr<framework::Tensor> tmp(new framework::LoDTensor());
96
    tmp->Resize(Y_t->dims());
N
nhzlx 已提交
97 98

    memcpy(tmp->mutable_data<float>(platform::CPUPlace()), weight_data,
99
           Y_t->dims()[0] * Y_t->dims()[1] * sizeof(float));
100 101
    TensorRTEngine::Weight weight{nvinfer1::DataType::kFLOAT,
                                  static_cast<void*>(weight_data),
N
nhzlx 已提交
102
                                  static_cast<size_t>(Y_t->numel())};
103
    TensorRTEngine::Weight tmp_weight(nvinfer1::DataType::kFLOAT,
N
nhzlx 已提交
104
                                      static_cast<void*>(tmp->data<float>()),
N
nhzlx 已提交
105
                                      static_cast<size_t>(Y_t->numel()));
106 107 108 109 110
    weight.dims.assign({Y_t->dims()[0], Y_t->dims()[1]});
    tmp_weight.dims = weight.dims;

    // The data layout of TRT FC layer's weight is different from fluid's FC,
    // need to reorder the elements.
111
    ReorderCKtoKC(weight, &tmp_weight);
112 113 114 115 116

    // Currently, the framework can only handle one fluid op -> one TRT layer,
    // but fc fuses `mul` and `bias` (2 fluid ops), so here is a trick, just
    // handle `mul`, leave `add` as another layer.
    // DEBUG
117 118 119 120 121 122 123 124 125 126 127 128
    float* bias_data = nullptr;
    int bias_num = 0;
    if (with_bias) {
      auto* b_v = scope.FindVar(op_desc.Input("Bias").front());
      auto* b_t = b_v->GetMutable<framework::LoDTensor>();
      bias_data =
          engine_->GetWeightCPUData(op_desc.Input("Bias").front(), b_t, false);
      bias_num = b_t->numel();
    }
    TensorRTEngine::Weight bias{nvinfer1::DataType::kFLOAT,
                                static_cast<void*>(bias_data),
                                static_cast<size_t>(bias_num)};
129 130 131

    auto* layer = TRT_ENGINE_ADD_LAYER(engine_, FullyConnected,
                                       *const_cast<nvinfer1::ITensor*>(X),
132
                                       n_output, tmp_weight.get(), bias.get());
133

134
    engine_->weight_map[op_desc.Input(w_name).front()] = std::move(tmp);
135
    auto output_name = op_desc.Output("Out").front();
136 137 138 139 140 141 142

    RreplenishLayerAndOutput(layer, "fc", {output_name}, test_mode);
    if (enable_int8) {
#if IS_TRT_VERSION_GE(5000)
      float out_scale = boost::get<float>(op_desc.GetAttr("out_scale"));
      engine_->SetTensorDynamicRange(layer->getOutput(0), out_scale);
#endif
143
    }
144 145 146 147 148 149 150
  }
};

}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle

N
nhzlx 已提交
151
REGISTER_TRT_OP_CONVERTER(fc, FcOpConverter);