paddle_api.h 7.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once

#include <cassert>
#include <memory>
#include <string>
#include <vector>

namespace paddle {

// Data type.
enum PaddleDType {
  FLOAT32,
  INT64,
  // TODO(Superjomn) support more data types if needed.
};

/*
 * Memory menage for PaddleTensor.
 * The PaddleBuf holds a buffer for data input or output. The memory can be
 * allocated by user or by PaddleBuf itself, but in any case, the PaddleBuf
 * should be reused for better performance.
 *
 * For user allocated memory, the following API can be used:
 * - PaddleBuf(void* data, size_t length) to set an external memory by
 * specifying
 *   the memory address and length.
 * - Reset(void* data, size_t length) to reset the PaddleBuf with an external
 * memory.
 * ATTENTION, for user allocated memory, deallocation should be done by users
 * externally after the program finished. The PaddleBuf won't do any allocation
 * or deallocation.
 *
 * To have the PaddleBuf allocate and manage the memory:
 * - PaddleBuf(size_t length) will allocate a memory of size `length`.
 * - Resize(size_t length) resize the memory to no less than `length`, ATTENTION
 *   if the allocated memory is larger than `length`, nothing will done.
 */
class PaddleBuf {
 public:
  // PaddleBuf allocate memory internally, and manage it.
  explicit PaddleBuf(size_t length)
      : data_(new char[length]), length_(length), memory_owned_(true) {}
  // Set external memory, the PaddleBuf won't manage it.
  PaddleBuf(void* data, size_t length)
      : data_(data), length_(length), memory_owned_{false} {}
  // Copy only available when memory is managed externally.
  explicit PaddleBuf(const PaddleBuf&);

  // Resize the memory.
  void Resize(size_t length);
  // Reset to external memory, with address and length set.
  void Reset(void* data, size_t length);
  // Tell whether the buffer is empty.
  bool empty() const { return length_ == 0; }
  // Get the memory address.
  void* data() const { return data_; }
  // Get the memory length.
  size_t length() const { return length_; }

  ~PaddleBuf() { Free(); }
  PaddleBuf& operator=(const PaddleBuf&);
  PaddleBuf& operator=(PaddleBuf&&);
  PaddleBuf() = default;
  PaddleBuf(PaddleBuf&& other);

 private:
  void Free();
  void* data_{nullptr};  // pointer to the data memory.
  size_t length_{0};     // number of memory bytes.
  bool memory_owned_{true};
};

// Basic input and output data structure for PaddlePredictor.
struct PaddleTensor {
  PaddleTensor() = default;
  std::string name;  // variable name.
  std::vector<int> shape;
  PaddleBuf data;  // blob of data.
  PaddleDType dtype;
  std::vector<std::vector<size_t>> lod;  // Tensor+LoD equals LoDTensor
};

enum class PaddlePlace { kUNK = -1, kCPU, kGPU };
// Tensor without copy, currently only supports AnalysisPredictor.
class ZeroCopyTensor {
 public:
  void Reshape(const std::vector<int>& shape);

  // Get the memory in CPU or GPU with specific data type, should Reshape first
  // to tell the data size.
  // Once can directly call this data to feed the data.
  // This is for write the input tensor.
  template <typename T>
  T* mutable_data(PaddlePlace place);
  // Get the memory directly, will return the place and memory size by pointer.
  // This is for reading the output tensor.
  template <typename T>
  T* data(PaddlePlace* place, int* size) const;

  std::vector<int64_t> shape() const;

  void SetLoD(const std::vector<std::vector<size_t>>& x);
  std::vector<std::vector<size_t>> lod() const;
  const std::string& name() const { return name_; }

 protected:
  explicit ZeroCopyTensor(void* scope) : scope_{scope} {}
  void SetName(const std::string& name) { name_ = name; }
  void* FindTensor() const;

 private:
  std::string name_;
  bool input_or_output_;
  friend class AnalysisPredictor;
  void* scope_{nullptr};
};

/*
 * A simple Inference API for Paddle.
 */
class PaddlePredictor {
 public:
  struct Config;
  PaddlePredictor() = default;
  PaddlePredictor(const PaddlePredictor&) = delete;
  PaddlePredictor& operator=(const PaddlePredictor&) = delete;

  // Predict an record.
  // The caller should be responsible for allocating and releasing the memory of
  // `inputs`. `inputs` should be available until Run returns. Caller should be
  // responsible for the output tensor's buffer, either allocated or passed from
  // outside.
  virtual bool Run(const std::vector<PaddleTensor>& inputs,
                   std::vector<PaddleTensor>* output_data,
                   int batch_size = -1) = 0;

  // Zero copy input and output optimization.
  // Get the input or output tensors, and operate on their memory directly,
  // without copy.
  virtual std::unique_ptr<ZeroCopyTensor> GetInputTensor(
      const std::string& name) {
    return nullptr;
  }
  virtual std::unique_ptr<ZeroCopyTensor> GetOutputTensor(
      const std::string& name) {
    return nullptr;
  }
  virtual bool ZeroCopyRun() { return false; }

  // Clone a predictor that share the model weights, the Cloned predictor should
  // be thread-safe.
  virtual std::unique_ptr<PaddlePredictor> Clone() = 0;

  // Destroy the Predictor.
  virtual ~PaddlePredictor() = default;

  // The common configs for all the predictors.
  struct Config {
    std::string model_dir;  // path to the model directory.
  };
};

struct NativeConfig : public PaddlePredictor::Config {
  // GPU related fields.
  bool use_gpu{false};
  int device{0};
  float fraction_of_gpu_memory{-1.f};  // Change to a float in (0,1] if needed.

  // Specify the exact path of program and parameter files.
  std::string prog_file;
  std::string param_file;

  // Specify the variable's name of each input if input tensors don't follow the
  // `feeds` and `fetches` of the phase `save_inference_model`.
  bool specify_input_name{false};
L
luotao1 已提交
189 190 191 192 193 194 195 196 197

  // Set and get the number of cpu threads.
  void SetCPUNumThreads(int cpu_num_threads) {
    cpu_num_threads_ = cpu_num_threads;
  }
  int GetCPUNumThreads() const { return cpu_num_threads_; }

 protected:
  int cpu_num_threads_{1};  // number of cpu threads for each instance.
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
};

// A factory to help create different predictors.
//
// Usage:
//
// NativeConfig config;
// ... // change the configs.
// auto native_predictor = CreatePaddlePredictor(config);
//
// FOR EXTENSION DEVELOPER:
// Different predictors are designated by config type. Similar configs can be
// merged, but there shouldn't be a huge config containing different fields for
// more than one kind of predictors.
template <typename ConfigT>
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor(const ConfigT& config);

// NOTE The following APIs are too trivial, we will discard it in the following
// versions.
enum class PaddleEngineKind {
  kNative = 0,         // Use the native Fluid facility.
  kAutoMixedTensorRT,  // Automatically mix Fluid with TensorRT.
  kAnalysis,           // More optimization.
  kAnakin              // Use Anakin for inference, not mature yet.
};

template <typename ConfigT, PaddleEngineKind engine>
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor(const ConfigT& config);

int PaddleDtypeSize(PaddleDType dtype);

}  // namespace paddle