rank_loss_op.cc 4.8 KB
Newer Older
Y
Yibing Liu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/operators/rank_loss_op.h"

namespace paddle {
namespace operators {

class RankLossOp : public framework::OperatorWithKernel {
 public:
  RankLossOp(const std::string &type, const framework::VariableNameMap &inputs,
             const framework::VariableNameMap &outputs,
             const framework::AttributeMap &attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

 protected:
28
  void InferShape(framework::InferShapeContext *ctx) const override {
Y
Yibing Liu 已提交
29
    // input check
Q
Qiao Longfei 已提交
30 31 32 33 34 35 36 37
    PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) shouldn't be null");
    PADDLE_ENFORCE(ctx->HasInput("Left"), "Input(Left) shouldn't be null");
    PADDLE_ENFORCE(ctx->HasInput("Right"), "Input(Right) shouldn't be null");

    auto label_dims = ctx->GetInputDim("Label");
    auto left_dims = ctx->GetInputDim("Left");
    auto right_dims = ctx->GetInputDim("Right");

Y
Yibing Liu 已提交
38 39
    PADDLE_ENFORCE((label_dims == left_dims) && (left_dims == right_dims),
                   "All inputs must have the same size");
40
    PADDLE_ENFORCE((label_dims.size() == 2) && (label_dims[1] == 1),
Y
Yibing Liu 已提交
41
                   "All inputs must be row vector with size batch_size x 1.");
Q
Qiao Longfei 已提交
42
    ctx->SetOutputDim("Out", label_dims);
Y
Yibing Liu 已提交
43 44 45 46 47 48 49 50
  }
};

class RankLossOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  RankLossOpMaker(framework::OpProto *proto,
                  framework::OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
Y
Yibing Liu 已提交
51
    AddInput("Label",
52 53 54 55
             "The label indicating A ranked higher than B or not, row vector.");
    AddInput("Left", "The output of RankNet for doc A, vector.");
    AddInput("Right", "The output of RankNet for doc B, vetor");
    AddOutput("Out", "The output loss of RankLoss operator, vector.");
Y
Yibing Liu 已提交
56 57
    AddComment(R"DOC(RankLoss operator

Y
Yibing Liu 已提交
58 59 60 61 62 63 64 65 66 67
Rank loss operator for RankNet[1]. RankNet is a pairwise ranking model with
one training sample consisting of a pair of doc A and B, and the label P
indicating that A is ranked higher than B or not:

P = {0, 1} or {0, 0.5, 1}, where 0.5 means no information about the rank of
the input pair.

The RankLoss operator contains three inputs: Left (o_i), Right (o_j) and Label
(P_{i,j}), which represent the output of RankNet for two docs and the label
respectively, and yields the rank loss C_{i,j} by following the expression
Y
Yibing Liu 已提交
68 69 70 71 72 73 74

\f[
  C_{i,j} = -\tilde{P_{ij}} * o_{i,j} + log(1 + e^{o_{i,j}}) \\
  o_{i,j} =  o_i - o_j  \\
  \tilde{P_{i,j}} = \left \{0, 0.5, 1 \right \} \ or \ \left \{0, 1 \right \}
\f]

Y
Yibing Liu 已提交
75
The operator can take inputs of one sample or in batch.
Y
Yibing Liu 已提交
76

Y
Yibing Liu 已提交
77
[1]. Chris Burges, Tal Shaked, Erin Renshaw, et al. Learning to
Y
Yibing Liu 已提交
78 79
     Rank using Gradient Descent.
     http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf
Y
Yibing Liu 已提交
80 81 82 83 84 85 86 87 88 89 90 91 92
)DOC");
  }
};

class RankLossGradOp : public framework::OperatorWithKernel {
 public:
  RankLossGradOp(const std::string &type,
                 const framework::VariableNameMap &inputs,
                 const framework::VariableNameMap &outputs,
                 const framework::AttributeMap &attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

 protected:
93
  void InferShape(framework::InferShapeContext *ctx) const override {
Q
Qiao Longfei 已提交
94 95 96 97 98 99 100 101 102 103 104
    PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) shouldn't be null.");
    PADDLE_ENFORCE(ctx->HasInput("Left"), "Input(Left) shouldn't be null.");
    PADDLE_ENFORCE(ctx->HasInput("Right"), "Input(Right) shouldn't be null.");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) shouldn't be null.");
    auto dims = ctx->GetInputDim("Left");
    auto left_grad_name = framework::GradVarName("Left");
    auto right_grad_name = framework::GradVarName("Right");

    if (ctx->HasOutput(left_grad_name)) {
      ctx->SetOutputDim(left_grad_name, dims);
Y
Yibing Liu 已提交
105
    }
Q
Qiao Longfei 已提交
106 107 108

    if (ctx->HasOutput(right_grad_name)) {
      ctx->SetOutputDim(right_grad_name, dims);
Y
Yibing Liu 已提交
109
    }
Y
Yibing Liu 已提交
110 111 112 113 114 115 116 117 118 119 120 121 122
  }
};

}  // namespace operators
}  // namespace paddle
namespace ops = paddle::operators;

REGISTER_OP(rank_loss, ops::RankLossOp, ops::RankLossOpMaker, rank_loss_grad,
            ops::RankLossGradOp);
REGISTER_OP_CPU_KERNEL(rank_loss,
                       ops::RankLossKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(
    rank_loss_grad, ops::RankLossGradKernel<paddle::platform::CPUPlace, float>);