executor.cc 4.8 KB
Newer Older
Q
qijun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/framework/executor.h"
Y
Yang Yang 已提交
16

Y
Yang Yang 已提交
17
#include <set>
Y
Yang Yang 已提交
18

Y
Yang Yu 已提交
19
#include "gflags/gflags.h"
Q
QI JUN 已提交
20
#include "paddle/framework/feed_fetch_type.h"
Y
Yu Yang 已提交
21
#include "paddle/framework/lod_rank_table.h"
Y
Yu Yang 已提交
22
#include "paddle/framework/lod_tensor_array.h"
Q
qijun 已提交
23
#include "paddle/framework/op_registry.h"
Y
Yang Yu 已提交
24
#include "paddle/platform/place.h"
Y
Yang Yu 已提交
25 26 27 28

DEFINE_bool(check_nan_inf, false,
            "Checking whether operator produce NAN/INF or not. It will be "
            "extremely slow so please use this flag wisely.");
Q
qijun 已提交
29 30 31 32

namespace paddle {
namespace framework {

Y
Yang Yang 已提交
33 34 35
const std::string kFeedOpType = "feed";
const std::string kFetchOpType = "fetch";

D
dzhwinter 已提交
36
Executor::Executor(const platform::Place& place) : place_(place) {}
Q
qijun 已提交
37

Y
Yancey 已提交
38
static void CreateTensor(Variable* var, proto::VarDesc::VarType var_type) {
39
  if (var_type == proto::VarDesc::LOD_TENSOR) {
Q
QI JUN 已提交
40
    var->GetMutable<LoDTensor>();
41
  } else if (var_type == proto::VarDesc::SELECTED_ROWS) {
Q
QI JUN 已提交
42
    var->GetMutable<SelectedRows>();
43
  } else if (var_type == proto::VarDesc::FEED_MINIBATCH) {
Q
QI JUN 已提交
44
    var->GetMutable<FeedFetchList>();
45
  } else if (var_type == proto::VarDesc::FETCH_LIST) {
Q
QI JUN 已提交
46
    var->GetMutable<FeedFetchList>();
47
  } else if (var_type == proto::VarDesc::STEP_SCOPES) {
Y
Yu Yang 已提交
48
    var->GetMutable<std::vector<framework::Scope>>();
49
  } else if (var_type == proto::VarDesc::LOD_RANK_TABLE) {
Y
Yu Yang 已提交
50
    var->GetMutable<LoDRankTable>();
51
  } else if (var_type == proto::VarDesc::LOD_TENSOR_ARRAY) {
Y
Yu Yang 已提交
52
    var->GetMutable<LoDTensorArray>();
Y
Yang Yu 已提交
53 54
  } else if (var_type == proto::VarDesc::PLACE_LIST) {
    var->GetMutable<platform::PlaceList>();
Q
QI JUN 已提交
55 56
  } else {
    PADDLE_THROW(
Y
Yu Yang 已提交
57
        "Variable type %d is not in "
Y
Yang Yu 已提交
58 59
        "[LoDTensor, SelectedRows, FEED_MINIBATCH, FETCH_LIST, LOD_RANK_TABLE,"
        " PLACE_LIST]",
Y
Yu Yang 已提交
60
        var_type);
Q
QI JUN 已提交
61 62 63
  }
}

Y
Yang Yu 已提交
64 65
static void CheckTensorNANOrInf(const std::string& name,
                                const framework::Tensor& tensor) {
Y
Yang Yu 已提交
66
  if (tensor.memory_size() == 0) {
Y
Yang Yu 已提交
67 68
    return;
  }
Y
Yang Yu 已提交
69 70
  if (tensor.type().hash_code() != typeid(float).hash_code() &&
      tensor.type().hash_code() != typeid(double).hash_code()) {
Y
Yang Yu 已提交
71 72 73 74 75 76
    return;
  }
  PADDLE_ENFORCE(!framework::HasInf(tensor), "Tensor %s has Inf", name);
  PADDLE_ENFORCE(!framework::HasNAN(tensor), "Tensor %s has NAN", name);
}

Y
Yu Yang 已提交
77
void Executor::Run(const ProgramDesc& pdesc, Scope* scope, int block_id,
T
typhoonzero 已提交
78
                   bool create_local_scope, bool create_vars) {
Y
Yang Yang 已提交
79
  // TODO(tonyyang-svail):
Y
Yang Yang 已提交
80
  //    - only runs on the first device (i.e. no interdevice communication)
Y
Yang Yang 已提交
81
  //    - will change to use multiple blocks for RNN op and Cond Op
82
  PADDLE_ENFORCE_LT(static_cast<size_t>(block_id), pdesc.Size());
83
  auto& block = pdesc.Block(block_id);
Y
Yang Yang 已提交
84

Y
Yu Yang 已提交
85
  Scope* local_scope = scope;
T
typhoonzero 已提交
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
  if (create_vars) {
    if (create_local_scope) {
      local_scope = &scope->NewScope();
      for (auto& var : block.AllVars()) {
        if (var->Name() == framework::kEmptyVarName) {
          continue;
        }

        if (var->Persistable()) {
          auto* ptr = scope->Var(var->Name());
          CreateTensor(ptr, var->GetType());
          VLOG(3) << "Create Variable " << var->Name()
                  << " global, which pointer is " << ptr;
        } else {
          auto* ptr = local_scope->Var(var->Name());
          CreateTensor(ptr, var->GetType());
          VLOG(3) << "Create Variable " << var->Name()
                  << " locally, which pointer is " << ptr;
        }
105
      }
T
typhoonzero 已提交
106 107
    } else {
      for (auto& var : block.AllVars()) {
Y
Yu Yang 已提交
108 109
        auto* ptr = local_scope->Var(var->Name());
        CreateTensor(ptr, var->GetType());
T
typhoonzero 已提交
110 111
        VLOG(3) << "Create variable " << var->Name() << ", which pointer is "
                << ptr;
Y
Yu Yang 已提交
112
      }
T
typhoonzero 已提交
113 114
    }  // if (create_local_scope)
  }    // if (create_vars)
Y
Yang Yang 已提交
115

116 117
  for (auto& op_desc : block.AllOps()) {
    auto op = paddle::framework::OpRegistry::CreateOp(*op_desc);
118
    VLOG(3) << op->DebugStringEx(local_scope);
D
dzhwinter 已提交
119
    op->Run(*local_scope, place_);
Y
Yang Yu 已提交
120 121 122 123 124 125 126 127 128
    if (FLAGS_check_nan_inf) {
      for (auto& vname : op->OutputVars(true)) {
        auto* var = local_scope->FindVar(vname);
        if (var == nullptr) continue;
        if (var->IsType<framework::LoDTensor>()) {
          CheckTensorNANOrInf(vname, var->Get<framework::LoDTensor>());
        }
      }
    }
Y
Yu Yang 已提交
129
  }
G
gongweibao 已提交
130
  if (create_vars && create_local_scope) {
Y
Yu Yang 已提交
131
    scope->DeleteScope(local_scope);
Q
qijun 已提交
132
  }
Q
qijun 已提交
133 134 135 136
}

}  // namespace framework
}  // namespace paddle