CTCErrorEvaluator.cpp 8.2 KB
Newer Older
Z
zhangjinchao01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */


#include "Evaluator.h"
#include "paddle/gserver/gradientmachines/NeuralNetwork.h"

namespace paddle {

/**
 * calculate sequence-to-sequence edit distance
 */
class CTCErrorEvaluator : public Evaluator {
private:
  MatrixPtr outActivations_;
  int numTimes_, numClasses_, numSequences_, blank_;
  real deletions_, insertions_, substitutions_;
  int seqClassficationError_;

  std::vector<int> path2String(const std::vector<int>& path) {
    std::vector<int> str;
    str.clear();
    int prevLabel = -1;
    for (std::vector<int>::const_iterator label = path.begin();
         label != path.end(); label++) {
      if (*label != blank_ &&
          (str.empty() || *label != str.back() || prevLabel == blank_)) {
        str.push_back(*label);
      }
      prevLabel = *label;
    }
    return str;
  }

  std::vector<int> bestLabelSeq() {
    std::vector<int> path;
    path.clear();
    real* acts = outActivations_->getData();
    for (int i = 0; i < numTimes_; ++i) {
      path.push_back(std::max_element(acts + i * numClasses_,
                                      acts + (i + 1) * numClasses_) -
                     (acts + i * numClasses_));
    }
    return path2String(path);
  }

  /* "sp, dp, ip" is the weighting parameter of "substitution, deletion,
   * insertion"
   * in edit-distance error */
  real stringAlignment(std::vector<int>& gtStr, std::vector<int>& recogStr,
                       bool backtrace = true, real sp = 1.0, real dp = 1.0,
                       real ip = 1.0) {
    std::vector<std::vector<int>> matrix;
    int substitutions, deletions, insertions;
    real distance;
    int n = gtStr.size();
    int m = recogStr.size();

    if (n == 0) {
      substitutions = 0;
      deletions = 0;
      insertions = m;
      distance = m;
    } else if (m == 0) {
      substitutions = 0;
      deletions = n;
      insertions = 0;
      distance = n;
    } else {
      substitutions = 0;
      deletions = 0;
      insertions = 0;
      distance = 0;
      // initialize the matrix
      matrix.resize(n + 1);
      for (int i = 0; i < n + 1; ++i) {
        matrix[i].resize(m + 1);
        for (int j = 0; j < m + 1; ++j) {
          matrix[i][j] = 0;
        }
      }
      for (int i = 0; i < n + 1; ++i) {
        matrix[i][0] = i;
      }
      for (int j = 0; j < m + 1; ++j) {
        matrix[0][j] = j;
      }

      // calculate the insertions, substitutions and deletions
      for (int i = 1; i < n + 1; ++i) {
        int s_i = gtStr[i - 1];
        for (int j = 1; j < m + 1; ++j) {
          int t_j = recogStr[j - 1];
          int cost = (s_i == t_j) ? 0 : 1;
          const int above = matrix[i - 1][j];
          const int left = matrix[i][j - 1];
          const int diag = matrix[i - 1][j - 1];
          const int cell = std::min(above + 1, std::min(left + 1, diag + cost));
          matrix[i][j] = cell;
        }
      }

      if (backtrace) {
        size_t i = n;
        size_t j = m;
        substitutions = 0;
        deletions = 0;
        insertions = 0;

        while (i != 0 && j != 0) {
          if (matrix[i][j] == matrix[i - 1][j - 1]) {
            --i;
            --j;
          } else if (matrix[i][j] == matrix[i - 1][j - 1] + 1) {
            ++substitutions;
            --i;
            --j;
          } else if (matrix[i][j] == matrix[i - 1][j] + 1) {
            ++deletions;
            --i;
          } else {
            ++insertions;
            --j;
          }
        }
        while (i != 0) {
          ++deletions;
          --i;
        }
        while (j != 0) {
          ++insertions;
          --j;
        }
        int diff = substitutions + deletions + insertions;
        if (diff != matrix[n][m]) {
          LOG(ERROR) << "Found path with distance " << diff
                     << " but Levenshtein distance is " << matrix[n][m];
        }

        distance = (sp * substitutions) + (dp * deletions) + (ip * insertions);
      } else {
        distance = (real)matrix[n][m];
      }
    }
    real maxLen = std::max(m, n);
    deletions_ += deletions / maxLen;
    insertions_ += insertions / maxLen;
    substitutions_ += substitutions / maxLen;

    if (distance != 0) {
      seqClassficationError_ += 1;
    }

    return distance / maxLen;
  }

  real editDistance(real* output, int numTimes, int numClasses, int* labels,
                    int labelsLen) {
    numTimes_ = numTimes;
    numClasses_ = numClasses;
    blank_ = numClasses_ - 1;
    outActivations_ = Matrix::create(output, numTimes, numClasses);
    std::vector<int> recogStr, gtStr;
    recogStr = bestLabelSeq();
    for (int i = 0; i < labelsLen; ++i) {
      gtStr.push_back(labels[i]);
    }

    return stringAlignment(gtStr, recogStr);
  }

public:
  CTCErrorEvaluator()
      : numTimes_(0),
        numClasses_(0),
        numSequences_(0),
        blank_(0),
        deletions_(0),
        insertions_(0),
        substitutions_(0),
        seqClassficationError_(0) {}

  virtual real evalImp(std::vector<Argument>& arguments) {
    CHECK_EQ(arguments.size(), (size_t)2);
    Argument output, label;
197 198 199
    output.resizeAndCopyFrom(arguments[0], false, HPPL_STREAM_DEFAULT);
    label.resizeAndCopyFrom(arguments[1], false, HPPL_STREAM_DEFAULT);
    hl_stream_synchronize(HPPL_STREAM_DEFAULT);
Z
zhangjinchao01 已提交
200 201 202 203 204 205 206 207 208 209
    CHECK(label.sequenceStartPositions);
    CHECK(label.ids);
    size_t numSequences = label.sequenceStartPositions->getSize() - 1;
    const int* labelStarts = label.sequenceStartPositions->getData(false);
    const int* outputStarts = output.sequenceStartPositions->getData(false);
    real totalErr = 0;
    for (size_t i = 0; i < numSequences; ++i) {
      real err = 0;
      err = editDistance(
          output.value->getData() + output.value->getWidth() * outputStarts[i],
210
          outputStarts[i+1] - outputStarts[i], output.value->getWidth(),
Z
zhangjinchao01 已提交
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
          label.ids->getData() + labelStarts[i],
          labelStarts[i + 1] - labelStarts[i]);

      totalErr += err;
    }

    return totalErr;
  }

  virtual void eval(const NeuralNetwork& nn) {
    Evaluator::eval(nn);
    std::vector<Argument> arguments;
    arguments.reserve(config_.input_layers_size());
    for (const std::string& name : config_.input_layers()) {
      arguments.push_back(nn.getLayer(name)->getOutput());
    }
227 228 229
  }

  virtual void updateSamplesNum(const std::vector<Argument>& arguments) {
Z
zhangjinchao01 已提交
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
    numSequences_ += arguments[1].getNumSequences();
  }

  virtual void start() {
    Evaluator::start();
    numSequences_ = 0;
    blank_ = 0;
    deletions_ = 0;
    insertions_ = 0;
    substitutions_ = 0;
    seqClassficationError_ = 0;
  }

  virtual void printStats(std::ostream& os) {
    os << config_.name() << "="
       << (numSequences_ ? totalScore_ / numSequences_ : 0);
    os << "  deletions error"
       << "=" << (numSequences_ ? deletions_ / numSequences_ : 0);
    os << "  insertions error"
       << "=" << (numSequences_ ? insertions_ / numSequences_ : 0);
    os << "  substitutions error"
       << "=" << (numSequences_ ? substitutions_ / numSequences_ : 0);
    os << "  sequences error"
       << "=" << (real)seqClassficationError_ / numSequences_;
  }

  virtual void distributeEval(ParameterClient2* client) {
    double buf[6] = {totalScore_,
                     (double)deletions_,
                     (double)insertions_,
                     (double)substitutions_,
                     (double)seqClassficationError_,
                     (double)numSequences_};
    client->reduce(buf, buf, 6, FLAGS_trainer_id, 0);
    totalScore_ = buf[0];
    deletions_ = (real)buf[1];
    insertions_ = (real)buf[2];
    substitutions_ = (real)buf[3];
    seqClassficationError_ = (int)buf[4];
    numSequences_ = (int)buf[5];
  }
};

REGISTER_EVALUATOR(ctc_edit_distance, CTCErrorEvaluator);

}  // namespace paddle