tensor-inl.h 5.2 KB
Newer Older
L
liaogang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include "paddle/memory/memcpy.h"

namespace paddle {
namespace framework {

template <typename T>
inline void Tensor::check_memory_size() const {
  PADDLE_ENFORCE(holder_ != nullptr,
                 "Tenosr holds no memory. Call Tensor::mutable_data first.");
  PADDLE_ENFORCE(holder_->size() >= product(dims_) * sizeof(T) + offset_,
                 "Tensor's dims_ is out of bound. Call Tensor::mutable_data "
                 "first to re-allocate memory.");
}

template <typename T>
inline const T* Tensor::data() const {
  check_memory_size<T>();
  return reinterpret_cast<const T*>(
      reinterpret_cast<uintptr_t>(holder_->ptr()) + offset_);
}

template <typename T>
inline T* Tensor::data() {
  check_memory_size<T>();
  return reinterpret_cast<T*>(reinterpret_cast<uintptr_t>(holder_->ptr()) +
                              offset_);
}

template <typename T>
inline T* Tensor::mutable_data(DDim dims, platform::Place place) {
  Resize(dims);
  return mutable_data<T>(place);
}

template <typename T>
inline T* Tensor::mutable_data(platform::Place place) {
  PADDLE_ENFORCE(product(dims_) > 0,
                 "Tensor's numel must be larger than zero to call "
                 "Tensor::mutable_data. Call Tensor::set_dim first.");
  /* some versions of boost::variant don't have operator!= */
  size_t size = product(dims_) * sizeof(T);
  if (holder_ == nullptr || !(holder_->place() == place) ||
      holder_->size() < size + offset_) {
    if (platform::is_cpu_place(place)) {
      holder_.reset(new PlaceholderImpl<T, platform::CPUPlace>(
          boost::get<platform::CPUPlace>(place), size));
    }
#ifndef PADDLE_ONLY_CPU
    else if (platform::is_gpu_place(place)) {
      holder_.reset(new PlaceholderImpl<T, platform::GPUPlace>(
          boost::get<platform::GPUPlace>(place), size));
    }
#endif
    offset_ = 0;
  }
  return reinterpret_cast<T*>(reinterpret_cast<uintptr_t>(holder_->ptr()) +
                              offset_);
}

template <typename T>
inline void Tensor::ShareDataWith(const Tensor& src) {
  src.check_memory_size<T>();
  *this = src;
}

template <typename T>
inline void Tensor::CopyFrom(const Tensor& src,
                             const platform::CPUDeviceContext& ctx) {
  src.check_memory_size<T>();
  Resize(src.dims());

  auto src_place = src.holder_->place();
  auto src_ptr = static_cast<const void*>(src.data<T>());

  auto dst_place = ctx.GetPlace();
  auto dst_ptr = static_cast<void*>(mutable_data<T>(dst_place));

  auto size = product(src.dims_) * sizeof(T);

  if (platform::is_cpu_place(src_place)) {
    memory::Copy(boost::get<platform::CPUPlace>(dst_place), dst_ptr,
                 boost::get<platform::CPUPlace>(src_place), src_ptr, size);
  }
#ifndef PADDLE_ONLY_CPU
  else if (platform::is_gpu_place(src_place)) {
    memory::Copy(boost::get<platform::CPUPlace>(dst_place), dst_ptr,
                 boost::get<platform::GPUPlace>(src_place), src_ptr, size, 0);
  }
#endif
}

#ifndef PADDLE_ONLY_CPU
template <typename T>
inline void Tensor::CopyFrom(const Tensor& src,
                             const platform::CUDADeviceContext& ctx) {
  src.check_memory_size<T>();
  Resize(src.dims());

  auto src_place = src.holder_->place();
  auto src_ptr = static_cast<const void*>(src.data<T>());

  auto dst_place = ctx.GetPlace();
  auto dst_ptr = static_cast<void*>(mutable_data<T>(dst_place));

  auto size = product(src.dims_) * sizeof(T);

  if (platform::is_cpu_place(src_place)) {
    memory::Copy(boost::get<platform::GPUPlace>(dst_place), dst_ptr,
                 boost::get<platform::CPUPlace>(src_place), src_ptr, size,
                 ctx.stream());
  } else if (platform::is_gpu_place(src_place)) {
    memory::Copy(boost::get<platform::GPUPlace>(dst_place), dst_ptr,
                 boost::get<platform::GPUPlace>(src_place), src_ptr, size,
                 ctx.stream());
  }
}
#endif

template <typename T>
inline Tensor Tensor::Slice(const int& begin_idx, const int& end_idx) const {
  check_memory_size<T>();
  PADDLE_ENFORCE(begin_idx >= 0, "Slice begin index is less than zero.");
  PADDLE_ENFORCE(end_idx <= dims_[0], "Slice end index is out of bound.");
  PADDLE_ENFORCE(begin_idx < end_idx,
                 "Begin index must be less than end index.");
  PADDLE_ENFORCE(dims_[0] != 1, "Can not slice a tensor with dims_[0] = 1.");
  int base = product(dims_) / dims_[0];
  Tensor dst;
  dst.holder_ = holder_;
  DDim dst_dims = dims_;
  dst_dims[0] = end_idx - begin_idx;
  dst.Resize(dst_dims);
  dst.offset_ = offset_ + begin_idx * base * sizeof(T);
  return dst;
}

inline void Tensor::Resize(const DDim& dims) { dims_ = dims; }

inline const DDim& Tensor::dims() const { return dims_; }

}  // namespace framework
}  // namespace paddle