weight_norm_hook.py 8.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
from ... import fluid
from ...fluid import dygraph
from ...fluid import layers as F
from ...fluid.layer_helper import LayerHelper
from ...fluid.data_feeder import check_variable_and_dtype
from ...tensor.math import multiply

__all__ = ['weight_norm', 'remove_weight_norm']


def l2_norm(x, axis, epsilon=1e-12, name=None):
    if len(x.shape) == 1:
        axis = 0
    check_variable_and_dtype(x, "X", ("float32", "float64"), "norm")

    helper = LayerHelper("l2_normalize", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
        attrs={
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
        })
    return F.squeeze(norm, axes=[axis])


def norm_except_dim(p, dim):
    shape = p.shape
    ndims = len(shape)
    if dim == -1:
        return F.sqrt(F.reduce_sum(F.square(p)) + 1e-12)
    elif dim == 0:
        p_matrix = F.reshape(p, (shape[0], -1))
        return l2_norm(p_matrix, axis=1)
    elif dim == ndims - 1:
        p_matrix = F.reshape(p, (-1, shape[-1]))
        return l2_norm(p_matrix, axis=0)
    else:
        perm = list(range(ndims))
        perm[0] = dim
        perm[dim] = 0
        p_transposed = F.transpose(p, perm)
        return norm_except_dim(p_transposed, 0)


def _weight_norm(v, g, dim):
    shape = v.shape
    ndims = len(shape)

    if dim == -1:
        v_normalized = v / (F.sqrt(F.reduce_sum(F.square(v))) + 1e-12)
    elif dim == 0:
        p_matrix = F.reshape(v, (shape[0], -1))
        v_normalized = F.l2_normalize(p_matrix, axis=1)
        v_normalized = F.reshape(v_normalized, shape)
    elif dim == ndims - 1:
        p_matrix = F.reshape(v, (-1, shape[-1]))
        v_normalized = F.l2_normalize(p_matrix, axis=0)
        v_normalized = F.reshape(v_normalized, shape)
    else:
        perm = list(range(ndims))
        perm[0] = dim
        perm[dim] = 0
        p_transposed = F.transpose(v, perm)
        transposed_shape = p_transposed.shape
        p_matrix = F.reshape(p_transposed, (p_transposed.shape[0], -1))
        v_normalized = F.l2_normalize(p_matrix, axis=1)
        v_normalized = F.reshape(v_normalized, transposed_shape)
        v_normalized = F.transpose(v_normalized, perm)
    weight = multiply(v_normalized, g, axis=dim if dim is not None else -1)
    return weight


class WeightNorm(object):
    def __init__(self, name, dim):
        if dim is None:
            dim = -1
        self.name = name
        self.dim = dim

    def compute_weight(self, layer):
        g = getattr(layer, self.name + '_g')
        v = getattr(layer, self.name + '_v')
        return _weight_norm(v, g, self.dim)

    @staticmethod
    def apply(layer, name, dim):
        for k, hook in layer._forward_pre_hooks.items():
            if isinstance(hook, WeightNorm) and hook.name == name:
                raise RuntimeError("Cannot register two weight_norm hooks on "
                                   "the same parameter {}".format(name))

        if dim is None:
            dim = -1

115 116 117 118 119 120 121 122
        # support dim is negative numeber, (dim = -1) == (dim = None)
        weight_dim = len(layer._parameters[name].shape)
        assert (
            dim < weight_dim and dim >= -1 * weight_dim
        ), "dim must set between [-R, R), R means the dimension of weight."
        if dim != -1:
            dim = (dim + weight_dim) % weight_dim

123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
        fn = WeightNorm(name, dim)

        w = getattr(layer, name)
        del layer._parameters[name]

        g_var = norm_except_dim(w, dim)
        v = layer.create_parameter(w.shape, dtype=w.dtype)
        layer.add_parameter(name + "_v", v)
        g = layer.create_parameter(g_var.shape, dtype=g_var.dtype)
        layer.add_parameter(name + '_g', g)
        with dygraph.no_grad():
            F.assign(w, v)
            F.assign(g_var, g)
        setattr(layer, name, fn.compute_weight(layer))

        layer.register_forward_pre_hook(fn)
        return fn

    def remove(self, layer):
        w_var = self.compute_weight(layer)
        delattr(layer, self.name)
        del layer._parameters[self.name + '_g']
        del layer._parameters[self.name + '_v']
        w = layer.create_parameter(w_var.shape, dtype=w_var.dtype)
        layer.add_parameter(self.name, w)
        with dygraph.no_grad():
            F.assign(w_var, w)

    def __call__(self, layer, inputs):
        setattr(layer, self.name, self.compute_weight(layer))


def weight_norm(layer, name='weight', dim=0):
    """
    This weight_norm layer applies weight normalization to a parameter according to the 
    following formula:

    .. math::

        \mathbf{w} = g \dfrac{v}{\|v\|}

    Weight normalization is a reparameterization of the weight vectors in a neural network that 
    decouples the magnitude of those weight vectors from their direction. Weight normalization 
    replaces the parameter specified by `name`(eg: 'weight') with two parameters: one parameter 
    specifying the magnitude (eg: 'weight_g') and one parameter specifying the direction 
    (eg: 'weight_v'). Weight normalization has been implemented as discussed in this paper: 
    `Weight Normalization: A Simple Reparameterization to Accelerate Training of Deep Neural Networks
    <https://arxiv.org/pdf/1602.07868.pdf>`_.

    Parameters:
        layer(Layer): Layer of paddle, which has weight.
        name(str, optional): Name of the weight parameter. Default: 'weight'.
        dim(int, optional): Dimension over which to compute the norm. Dim is a non-negative number 
              which is less than the rank of weight Tensor. For Example, dim can be chosen from 0, 
              1, 2, 3 for convolution whose weight shape is [cout, cin, kh, kw] and rank is 4. 
              If dim is set to None, meaning that all elements will be normalized. Default: 0.
    
    Returns:
        Origin layer with weight norm hook.

    Examples:
        .. code-block:: python

          import numpy as np
          from paddle.nn import Conv2D
          from paddle.nn.utils import weight_norm

          x = np.array([[[[0.3, 0.4], [0.3, 0.07]], [[0.83, 0.37], [0.18, 0.93]]]]).astype('float32')
          paddle.disable_static()
          conv = Conv2D(3, 5, 3)
          wn = weight_norm(conv)
          print(conv.weight_g.shape)
          # [5]
          print(conv.weight_v.shape)
          # [5, 3, 3, 3]
    """
    WeightNorm.apply(layer, name, dim)
    return layer


def remove_weight_norm(layer, name='weight'):
    """
    remove weight normalization from layer.

    Parameters:
        layer(Layer): Layer of paddle, which has weight.
        name(str, optional): Name of the weight parameter. Default: 'weight'.

    Returns:
        Origin layer without weight norm

    Examples:
        .. code-block:: python
          import paddle
          from paddle.nn import Conv2D
          from paddle.nn.utils import weight_norm, remove_weight_norm

          paddle.disable_static()
          conv = Conv2D(3, 5, 3)
          wn = weight_norm(conv)
          remove_weight_norm(conv)
          print(conv.weight_g)
          # AttributeError: 'Conv2D' object has no attribute 'weight_g'
    """
    for k, hook in layer._forward_pre_hooks.items():
        if isinstance(hook, WeightNorm) and hook.name == name:
            hook.remove(layer)
            del layer._forward_pre_hooks[k]
            return layer

    raise ValueError("weight_norm of '{}' not found in {}".format(name, layer))