eig_op.h 12.9 KB
Newer Older
L
Lijunhui 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <math.h>
#include <algorithm>
#include <complex>
#include "paddle/fluid/operators/math/complex_functors.h"
#include "paddle/fluid/operators/math/lapack_function.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/math/matrix_solve.h"
#include "paddle/fluid/operators/svd_helper.h"
#include "paddle/fluid/operators/transpose_op.h"
#include "paddle/fluid/platform/for_range.h"
#define EPSILON 1e-6

namespace paddle {
namespace operators {

using paddle::framework::Tensor;

inline int BatchCount(const Tensor& matrix) {
  int count = 1;
  int num_dims = matrix.dims().size();
  for (int i = 0; i < num_dims - 2; ++i) {
    count *= matrix.dims()[i];
  }
  return count;
}

inline int MatrixStride(const Tensor& matrix) {
  framework::DDim dims_list = matrix.dims();
  int num_dims = dims_list.size();
  return dims_list[num_dims - 1] * dims_list[num_dims - 2];
}

// Transpose two axis of a Tensor
template <typename DeviceContext, typename T>
void TransposeTwoAxis(const Tensor& input, Tensor* transposed_input,
                      const int axis1, const int axis2,
                      const framework::ExecutionContext& context) {
  std::vector<int> permute(input.dims().size());
  std::iota(permute.begin(), permute.end(), 0);
  permute[axis1] = axis2;
  permute[axis2] = axis1;

  transposed_input->mutable_data<T>(input.dims(), context.GetPlace());
  auto& dev_ctx = context.template device_context<platform::CPUDeviceContext>();

  TransCompute<DeviceContext, T>(input.dims().size(), dev_ctx, input,
                                 transposed_input, permute);
}

// Apply eig to a batch of matrices, values, vectors and (intermidiate
// tensor) info are overritten
template <typename T>
void LapackEig(Tensor* input, Tensor* values, Tensor* vectors, int info,
               const framework::ExecutionContext& context) {
  char jobvl = 'N';
  char jobvr = 'V';  // only right eigenvectors are computed
  int num_dims = input->dims().size();
  int order = input->dims()[num_dims - 1];

  T* input_data = input->data<T>();
  int lda = std::max<int>(1, order);
  T* values_data = values->mutable_data<T>(context.GetPlace());
  T* lvector_data = nullptr;
  int ldvl = 1;
  T* rvector_data = vectors->mutable_data<T>(context.GetPlace());
  int ldvr = lda;
  int lwork = -1;

  int batch_count = BatchCount(*input);
  int matrix_stride = MatrixStride(*input);
  int values_stride = values->dims()[values->dims().size() - 1];

  Tensor rwork;
  math::Real<T>* rwork_data = nullptr;

  rwork.Resize(framework::make_ddim({lda * 2}));
  rwork_data = rwork.mutable_data<math::Real<T>>(context.GetPlace());

  // call lapackEig once to compute the size of work;
  T computed_work_size;
  math::lapackEig<T, math::Real<T>>(
      jobvl, jobvr, order, input_data, lda, values_data, lvector_data, ldvl,
      rvector_data, ldvr, &computed_work_size, lwork, rwork_data, &info);

  lwork = std::max<int>(1, static_cast<int>(math::Real<T>(computed_work_size)));
  Tensor work;
  work.Resize(framework::make_ddim({lwork}));
  T* work_data = work.mutable_data<T>(context.GetPlace());

  for (auto i = 0; i < batch_count; ++i) {
    T* current_matrix = &input_data[i * matrix_stride];
    T* current_values = &values_data[i * values_stride];
    T* current_rvectors = &rvector_data[i * matrix_stride];

    math::lapackEig<T, math::Real<T>>(
        jobvl, jobvr, order, current_matrix, lda, current_values, lvector_data,
        ldvl, current_rvectors, ldvr, work_data, lwork, rwork_data, &info);
    PADDLE_ENFORCE_EQ(
        info, 0,
        platform::errors::PreconditionNotMet(
            "current info is not 0, computation failed. "
            "= 0:  successful exit."
            "< 0:  if INFO = -i, the i-th argument had an illegal value."
            "> 0:  if INFO = i, the QR algorithm failed to compute all the "
            "eigenvalues, and no eigenvectors have been computed; "
            "elements i+1:N of WR and WI contain eigenvalues which "
            "have converged."));
  }
}

template <typename DeviceContext, typename T>
void ApplyEigKernel(const Tensor& input, Tensor* values, Tensor* vectors,
                    const framework::ExecutionContext& context) {
  Tensor input_column_major;
  Tensor vectors_row_major;
  int num_dims = input.dims().size();

  // transfer to column-major memory layout i.e. make_ddim from tranposed_input:
  // [batch,row,col]->[batch,col,row]
  TransposeTwoAxis<DeviceContext, T>(input, &input_column_major, num_dims - 1,
                                     num_dims - 2, context);
  // make sure 'vectors_row_major' holds memory before passed to LapackEig()
  vectors_row_major.Resize(input.dims());
  int info = 0;
  LapackEig<T>(&input_column_major, values, &vectors_row_major, info, context);

  // transfer column-major layout back
  // vectors_row_major: column-major layout
  // vector: original layout
  TransposeTwoAxis<DeviceContext, T>(vectors_row_major, vectors, num_dims - 1,
                                     num_dims - 2, context);
}

template <typename T, typename Tout>
void ConstructComplexVectors(Tensor* c_vectors, const Tensor& c_values,
                             const Tensor& r_vectors,
                             const framework::ExecutionContext& ctx,
                             int batch_count, int order) {
  int matrix_stride = MatrixStride(r_vectors);

  auto* c_vectors_data = c_vectors->mutable_data<Tout>(ctx.GetPlace());
  auto* c_values_data = c_values.data<Tout>();
  auto* r_v_data = r_vectors.data<T>();

  for (int b = 0; b < batch_count; b++) {
    auto* vecs = &r_v_data[b * matrix_stride];
    auto* res = &c_vectors_data[b * matrix_stride];
    auto* vals = &c_values_data[b * order];

    for (int j = 0; j < order; j++) {
      if (vals[j].imag < EPSILON) {
        for (int i = 0; i < order; i++) {
          res[j * order + i] = platform::complex<T>(vecs[j * order + i], 0);
        }
      } else {
        for (int i = 0; i < order; i++) {
          res[j * order + i] = platform::complex<T>(vecs[j * order + i],
                                                    vecs[(j + 1) * order + i]);
          res[(j + 1) * order + i] = platform::complex<T>(
              vecs[j * order + i], -vecs[(j + 1) * order + i]);
        }
        j++;
      }
    }
  }
}

template <typename DeviceContext, typename T, typename Tout>
class EigKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* x = context.Input<Tensor>("X");
    auto* out_values = context.Output<Tensor>("Eigenvalues");
    auto* out_vectors = context.Output<Tensor>("Eigenvectors");

    if (!framework::IsComplexType(x->type())) {
      out_values->mutable_data<Tout>(context.GetPlace());
      out_vectors->mutable_data<Tout>(context.GetPlace());

      int batch_count = BatchCount(*x);
      int order = x->dims()[x->dims().size() - 1];

      Tensor real_values;
      Tensor real_vectors;
      // double the size of real_values, the first half stores the real part,
      // the next half stores the imag part
      std::vector<int> origin_dim =
          framework::vectorize<int>(out_values->dims());
      int last_item = origin_dim.back();
      origin_dim.pop_back();
      origin_dim.push_back(last_item * 2);
      framework::DDim big_dim = framework::make_ddim(origin_dim);

      real_values.mutable_data<math::Real<T>>(big_dim, context.GetPlace());
      real_vectors.mutable_data<math::Real<T>>(x->dims(), context.GetPlace());

      ApplyEigKernel<DeviceContext, math::Real<T>>(*x, &real_values,
                                                   &real_vectors, context);
      auto dito =
          math::DeviceIndependenceTensorOperations<DeviceContext, math::Real<T>,
                                                   Tout>(context);

      // 1. extract real part & imag part from real_values
      Tensor real_part = dito.Slice(real_values, {-1}, {0}, {order});
      Tensor imag_part = dito.Slice(real_values, {-1}, {order}, {order * 2});

      // 2. construct complex values
      auto* real_part_data = real_part.data<math::Real<T>>();
      auto* imag_part_data = imag_part.data<math::Real<T>>();
      int out_values_numel = out_values->numel();
      platform::ForRange<DeviceContext> for_range(
          context.template device_context<DeviceContext>(), out_values_numel);
      math::RealImagToComplexFunctor<Tout> functor(
          real_part_data, imag_part_data,
          out_values->mutable_data<Tout>(context.GetPlace()), out_values_numel);
      for_range(functor);

      // 3. construct complex vectors
      Tensor real_vector_trans = dito.Transpose(real_vectors);
      Tensor out_vectors_trans;
      out_vectors_trans.mutable_data<Tout>(x->dims(), context.GetPlace());
      ConstructComplexVectors<math::Real<T>, Tout>(
          &out_vectors_trans, *out_values, real_vector_trans, context,
          batch_count, order);
      TransposeTwoAxis<DeviceContext, Tout>(out_vectors_trans, out_vectors,
                                            x->dims().size() - 1,
                                            x->dims().size() - 2, context);
    } else {
      out_values->mutable_data<T>(context.GetPlace());
      out_vectors->mutable_data<T>(context.GetPlace());

      ApplyEigKernel<DeviceContext, T>(*x, out_values, out_vectors, context);
    }
  }
};

template <typename DeviceContext, typename Tout>
void ComputeBackwardForComplexInput(
    const Tensor& V, const Tensor& L, const Tensor& gL, const Tensor& gV,
    Tout* x_grad_data, int batch_count, int order,
    const framework::ExecutionContext& context) {
  auto dito =
      math::DeviceIndependenceTensorOperations<DeviceContext, Tout, Tout>(
          context);

  Tensor trans_v = dito.Transpose(V);
  Tensor Vh = dito.Conj(trans_v);
  Tensor Lconj = dito.Conj(L);
  Tensor Econj = dito.Sub(dito.Unsqueeze(Lconj, -2), dito.Unsqueeze(Lconj, -1));
  Tensor VhgV = dito.Matmul(Vh, gV);
  Tensor diag_real = dito.Real(VhgV);
  Tensor diag_res = dito.BatchDiag(diag_real, batch_count);
  Tensor diag_unsqueezed = dito.Unsqueeze(diag_res, -2);

  // turn diag_unsqueezed into complex
  auto numel = diag_unsqueezed.numel();
  Tensor diag_unsqueezed_complex;
  auto* data_diag_un = diag_unsqueezed.data<math::Real<Tout>>();
  auto* data_diag_un_com = diag_unsqueezed_complex.mutable_data<Tout>(
      diag_unsqueezed.dims(), context.GetPlace(),
      static_cast<size_t>(numel * sizeof(Tout)));
  auto& dev_ctx = context.template device_context<DeviceContext>();
  platform::ForRange<DeviceContext> for_range(dev_ctx, numel);
  math::RealToComplexFunctor<Tout> functor(data_diag_un, data_diag_un_com,
                                           numel);
  for_range(functor);
  // real tensor multiply complex tensor in broadcast manner
  Tensor res1 = dito.RealMulComplex(V, diag_unsqueezed_complex);
  Tensor res2 = dito.Matmul(Vh, res1);
  Tensor result = dito.Sub(VhgV, res2);

  result.mutable_data<Tout>(V.dims(), context.GetPlace());
  result = dito.Div(result, Econj);
  result = dito.DiagFill(order, order, order, 0, gL, result);
  Tensor rhs = dito.Matmul(result, Vh);

  // solve linear system
  // solve(Vh, rhs, out, m, k)
  // Vh: matrix with shape [m,m]
  // rhs: rhs with shape [m,k]
  // x_grad: out
  int m = Vh.dims()[Vh.dims().size() - 1];
  int k = rhs.dims()[rhs.dims().size() - 1];
  auto* matrix_data = Vh.data<Tout>();
  auto* rhs_data = rhs.data<Tout>();
  math::SolveLinearSystem<Tout>(matrix_data, rhs_data, x_grad_data, m, k,
                                batch_count);
}

template <typename DeviceContext, typename T, typename Tout>
class EigGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto& L = *context.Input<Tensor>("Eigenvalues");
    auto& V = *context.Input<Tensor>("Eigenvectors");
    auto& gL = *context.Input<Tensor>(framework::GradVarName("Eigenvalues"));
    auto& gV = *context.Input<Tensor>(framework::GradVarName("Eigenvectors"));

    auto& x_grad = *context.Output<Tensor>(framework::GradVarName("X"));
    auto* x_grad_data = x_grad.mutable_data<Tout>(context.GetPlace());

    auto& dims = V.dims();
    framework::DDim dim_origin = dims;
    int num_dims = dim_origin.size();
    int batch_count = BatchCount(V);
    const int order = dim_origin[num_dims - 1];

    ComputeBackwardForComplexInput<DeviceContext, Tout>(
        V, L, gL, gV, x_grad_data, batch_count, order, context);
  }
};

}  // namespace operators
}  // namespace paddle