test_engine.cc 7.5 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <cuda.h>
#include <cuda_runtime_api.h>
#include <glog/logging.h>
#include <gtest/gtest.h>

N
nhzlx 已提交
20 21
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/framework/tensor_util.h"
22
#include "paddle/fluid/inference/tensorrt/engine.h"
Y
Yan Chunwei 已提交
23 24 25 26 27 28 29 30 31
#include "paddle/fluid/platform/enforce.h"

namespace paddle {
namespace inference {
namespace tensorrt {

class TensorRTEngineTest : public ::testing::Test {
 protected:
  void SetUp() override {
N
nhzlx 已提交
32 33
    ctx_ = new platform::CUDADeviceContext(platform::CUDAPlace(0));

34
    engine_ = new TensorRTEngine(10, 1 << 10);
Y
Yan Chunwei 已提交
35 36 37
    engine_->InitNetwork();
  }

N
nhzlx 已提交
38 39 40 41 42 43
  void TearDown() override {
    if (engine_) {
      delete engine_;
      engine_ = nullptr;
    }
  }
N
nhzlx 已提交
44 45 46 47 48 49 50 51 52

  void PrepareInputOutput(const std::vector<float> &input,
                          std::vector<int> output_shape) {
    TensorFromVector(input, *ctx_, &input_);
    output_.Resize(framework::make_ddim(output_shape));
  }

  void GetOutput(std::vector<float> *output) {
    TensorToVector(output_, *ctx_, output);
Y
Yan Chunwei 已提交
53 54 55
  }

 protected:
N
nhzlx 已提交
56 57 58 59
  framework::Tensor input_;
  framework::Tensor output_;
  TensorRTEngine *engine_;
  platform::CUDADeviceContext *ctx_;
Y
Yan Chunwei 已提交
60 61 62 63 64 65 66 67
};

TEST_F(TensorRTEngineTest, add_layer) {
  const int size = 1;

  float raw_weight[size] = {2.};  // Weight in CPU memory.
  float raw_bias[size] = {3.};

N
nhzlx 已提交
68 69
  std::vector<void *> buffers(2);  // TRT binded inputs

Y
Yan Chunwei 已提交
70 71 72
  LOG(INFO) << "create weights";
  TensorRTEngine::Weight weight(nvinfer1::DataType::kFLOAT, raw_weight, size);
  TensorRTEngine::Weight bias(nvinfer1::DataType::kFLOAT, raw_bias, size);
N
nhzlx 已提交
73
  auto *x = engine_->DeclareInput("x", nvinfer1::DataType::kFLOAT,
Y
Yan Chunwei 已提交
74
                                  nvinfer1::DimsCHW{1, 1, 1});
N
nhzlx 已提交
75
  auto *fc_layer = TRT_ENGINE_ADD_LAYER(engine_, FullyConnected, *x, size,
Y
Yan Chunwei 已提交
76 77 78 79 80 81 82 83 84
                                        weight.get(), bias.get());
  PADDLE_ENFORCE(fc_layer != nullptr);

  engine_->DeclareOutput(fc_layer, 0, "y");
  LOG(INFO) << "freeze network";
  engine_->FreezeNetwork();
  ASSERT_EQ(engine_->engine()->getNbBindings(), 2);

  // fill in real data
N
nhzlx 已提交
85 86 87 88 89 90 91 92 93 94
  std::vector<float> x_v = {1234};
  std::vector<float> y_cpu;
  PrepareInputOutput(x_v, {1});

  auto *x_v_gpu_data = input_.mutable_data<float>(ctx_->GetPlace());
  auto *y_gpu_data = output_.mutable_data<float>(ctx_->GetPlace());

  buffers[0] = reinterpret_cast<void *>(x_v_gpu_data);
  buffers[1] = reinterpret_cast<void *>(y_gpu_data);

Y
Yan Chunwei 已提交
95
  LOG(INFO) << "to execute";
96
  engine_->Execute(1, &buffers, ctx_->stream());
Y
Yan Chunwei 已提交
97 98

  LOG(INFO) << "to get output";
N
nhzlx 已提交
99
  GetOutput(&y_cpu);
Y
Yan Chunwei 已提交
100 101

  LOG(INFO) << "to checkout output";
N
nhzlx 已提交
102
  ASSERT_EQ(y_cpu[0], x_v[0] * 2 + 3);
Y
Yan Chunwei 已提交
103 104
}

X
Xin Pan 已提交
105 106 107 108 109 110
TEST_F(TensorRTEngineTest, add_layer_multi_dim) {
  // Weight in CPU memory.
  // It seems tensorrt FC use col-major: [[1.0, 3.3], [1.1, 4.4]]
  // instead of row-major, which is [[1.0, 1.1], [3.3, 4.4]]
  float raw_weight[4] = {1.0, 1.1, 3.3, 4.4};
  float raw_bias[2] = {1.3, 2.4};
N
nhzlx 已提交
111
  std::vector<void *> buffers(2);  // TRT binded inputs
X
Xin Pan 已提交
112 113 114

  TensorRTEngine::Weight weight(nvinfer1::DataType::kFLOAT, raw_weight, 4);
  TensorRTEngine::Weight bias(nvinfer1::DataType::kFLOAT, raw_bias, 2);
N
nhzlx 已提交
115
  auto *x = engine_->DeclareInput("x", nvinfer1::DataType::kFLOAT,
X
Xin Pan 已提交
116
                                  nvinfer1::DimsCHW{1, 2, 1});
N
nhzlx 已提交
117
  auto *fc_layer = TRT_ENGINE_ADD_LAYER(engine_, FullyConnected, *x, 2,
X
Xin Pan 已提交
118 119 120 121 122 123 124
                                        weight.get(), bias.get());
  PADDLE_ENFORCE(fc_layer != nullptr);

  engine_->DeclareOutput(fc_layer, 0, "y");
  engine_->FreezeNetwork();
  ASSERT_EQ(engine_->engine()->getNbBindings(), 2);

N
nhzlx 已提交
125 126 127 128 129 130 131 132 133 134 135
  // fill in real data
  std::vector<float> x_v = {1.0, 2.0};
  std::vector<float> y_cpu;
  PrepareInputOutput(x_v, {2});

  auto *x_v_gpu_data = input_.mutable_data<float>(ctx_->GetPlace());
  auto *y_gpu_data = output_.mutable_data<float>(ctx_->GetPlace());

  buffers[0] = reinterpret_cast<void *>(x_v_gpu_data);
  buffers[1] = reinterpret_cast<void *>(y_gpu_data);

136
  engine_->Execute(1, &buffers, ctx_->stream());
X
Xin Pan 已提交
137 138

  LOG(INFO) << "to get output";
N
nhzlx 已提交
139
  GetOutput(&y_cpu);
N
nhzlx 已提交
140

141 142 143 144
  auto dims = engine_->GetITensor("y")->getDimensions();
  ASSERT_EQ(dims.nbDims, 3);
  ASSERT_EQ(dims.d[0], 2);
  ASSERT_EQ(dims.d[1], 1);
N
nhzlx 已提交
145

X
Xin Pan 已提交
146 147 148 149
  ASSERT_EQ(y_cpu[0], 4.5);
  ASSERT_EQ(y_cpu[1], 14.5);
}

150
TEST_F(TensorRTEngineTest, test_conv2d) {
151 152 153
  // Weight in CPU memory.
  float raw_weight[9] = {1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0};
  float raw_bias[1] = {0};
N
nhzlx 已提交
154
  std::vector<void *> buffers(2);  // TRT binded inputs
155 156 157

  TensorRTEngine::Weight weight(nvinfer1::DataType::kFLOAT, raw_weight, 9);
  TensorRTEngine::Weight bias(nvinfer1::DataType::kFLOAT, raw_bias, 1);
N
nhzlx 已提交
158
  auto *x = engine_->DeclareInput("x", nvinfer1::DataType::kFLOAT,
159
                                  nvinfer1::Dims3{1, 3, 3});
N
nhzlx 已提交
160
  auto *conv_layer =
161 162 163 164 165 166 167 168 169 170
      TRT_ENGINE_ADD_LAYER(engine_, Convolution, *x, 1, nvinfer1::DimsHW{3, 3},
                           weight.get(), bias.get());
  PADDLE_ENFORCE(conv_layer != nullptr);
  conv_layer->setStride(nvinfer1::DimsHW{1, 1});
  conv_layer->setPadding(nvinfer1::DimsHW{1, 1});

  engine_->DeclareOutput(conv_layer, 0, "y");
  engine_->FreezeNetwork();
  ASSERT_EQ(engine_->engine()->getNbBindings(), 2);

N
nhzlx 已提交
171 172 173 174 175 176 177 178 179 180 181 182
  // fill in real data
  std::vector<float> x_v = {1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
                            1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0};
  std::vector<float> y_cpu;
  PrepareInputOutput(x_v, {18});

  auto *x_v_gpu_data = input_.mutable_data<float>(ctx_->GetPlace());
  auto *y_gpu_data = output_.mutable_data<float>(ctx_->GetPlace());

  buffers[0] = reinterpret_cast<void *>(x_v_gpu_data);
  buffers[1] = reinterpret_cast<void *>(y_gpu_data);

183
  engine_->Execute(2, &buffers, ctx_->stream());
184 185

  LOG(INFO) << "to get output";
N
nhzlx 已提交
186 187
  GetOutput(&y_cpu);

188 189 190 191
  ASSERT_EQ(y_cpu[0], 4.0);
  ASSERT_EQ(y_cpu[1], 6.0);
}

192 193
TEST_F(TensorRTEngineTest, test_pool2d) {
  // Weight in CPU memory.
N
nhzlx 已提交
194
  auto *x = engine_->DeclareInput("x", nvinfer1::DataType::kFLOAT,
195 196
                                  nvinfer1::Dims3{1, 2, 2});

N
nhzlx 已提交
197
  std::vector<void *> buffers(2);  // TRT binded inputs
198
  nvinfer1::PoolingType pool_t = nvinfer1::PoolingType::kAVERAGE;
N
nhzlx 已提交
199 200
  auto *pool_layer = TRT_ENGINE_ADD_LAYER(engine_, Pooling, *x, pool_t,
                                          nvinfer1::DimsHW{2, 2});
201 202 203 204 205 206 207 208 209

  PADDLE_ENFORCE(pool_layer != nullptr);
  pool_layer->setStride(nvinfer1::DimsHW{1, 1});
  pool_layer->setPadding(nvinfer1::DimsHW{0, 0});

  engine_->DeclareOutput(pool_layer, 0, "y");
  engine_->FreezeNetwork();
  ASSERT_EQ(engine_->engine()->getNbBindings(), 2);

N
nhzlx 已提交
210 211 212 213 214 215 216 217 218 219 220
  // fill in real data
  std::vector<float> x_v = {1.0, 2.0, 5.0, 0.0, 2.0, 3.0, 5.0, 10.0};
  std::vector<float> y_cpu;
  PrepareInputOutput(x_v, {2});

  auto *x_v_gpu_data = input_.mutable_data<float>(ctx_->GetPlace());
  auto *y_gpu_data = output_.mutable_data<float>(ctx_->GetPlace());

  buffers[0] = reinterpret_cast<void *>(x_v_gpu_data);
  buffers[1] = reinterpret_cast<void *>(y_gpu_data);

221
  engine_->Execute(2, &buffers, ctx_->stream());
222 223

  LOG(INFO) << "to get output";
N
nhzlx 已提交
224
  GetOutput(&y_cpu);
225 226 227 228 229

  ASSERT_EQ(y_cpu[0], 2.0);
  ASSERT_EQ(y_cpu[1], 5.0);
}

Y
Yan Chunwei 已提交
230 231 232
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle