depthwise_conv_kernel.cu 4.5 KB
Newer Older
H
hong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/core/kernel_registry.h"

#include "paddle/fluid/operators/conv_op.h"

#include "paddle/phi/kernels/gpu/depthwise_conv.h"

#include "paddle/phi/kernels/cpu/conv_util.h"
#include "paddle/phi/kernels/funcs/batch_norm_utils.h"

namespace phi {

template <typename T, typename Context>
void DepthwiseConvKernel(const Context& dev_ctx,
                         const DenseTensor& input,
                         const DenseTensor& filter,
                         const std::vector<int>& strides_t,
                         const std::vector<int>& paddings_t,
                         const std::string& padding_algorithm,
                         int groups,
                         const std::vector<int>& dilations_t,
                         const std::string& data_format,
                         bool use_addto,
                         int workspace_size_MB,
                         bool exhaustive_search,
                         bool fuse_relu,
                         DenseTensor* out) {
  DenseTensor* output = out;
  output->mutable_data<T>(dev_ctx.GetPlace());

  const std::vector<int> strides = strides_t;
  std::vector<int> dilations = dilations_t;
  std::vector<int> paddings = paddings_t;

  const bool channel_last = (data_format == "NHWC" || data_format == "NDHWC");
  if (channel_last) {
    PADDLE_ENFORCE_EQ(
        output->dims()[output->dims().size() - 1] %
            input.dims()[input.dims().size() - 1],
        0,
        phi::errors::InvalidArgument(
            "ShapeError: The output channels must be a multiple of the "
            "input channels. But receivced output channel number is %d "
            "and input channel number is %d",
            output->dims()[output->dims().size() - 1],
            input.dims()[input.dims().size() - 1]));
  } else {
    PADDLE_ENFORCE_EQ(
        output->dims()[1] % input.dims()[1],
        0,
        phi::errors::InvalidArgument(
            "ShapeError: The output channels must be a multiple of the "
            "input channels. But receivced output channel number is %d "
            "and input channel number is %d",
            output->dims()[1],
            input.dims()[1]));
  }

  // update padding and dilation
  auto in_dims = input.dims();
  auto filter_dims = filter.dims();

  DDim in_data_dims;
  const paddle::framework::DataLayout data_layout =
      paddle::framework::StringToDataLayout(data_format);
  if (data_layout != paddle::framework::DataLayout::kNHWC) {
    in_data_dims = slice_ddim(in_dims, 2, in_dims.size());
  } else {
    in_data_dims = slice_ddim(in_dims, 1, in_dims.size() - 1);
  }

  DDim filter_data_dims = slice_ddim(filter_dims, 2, filter_dims.size());
  std::vector<int> ksize = vectorize<int>(filter_data_dims);
  UpdatePaddingAndDilation(
      &paddings, &dilations, padding_algorithm, in_data_dims, strides, ksize);

  bool is_sys_pad = strides.size() * 2 == paddings.size() ? false : true;
  if (!is_sys_pad) {
    for (size_t i = 0; i < strides.size(); ++i) {
      paddings.erase(paddings.begin() + i + 1);
    }
  }

  if (fuse_relu) {
    paddle::operators::math::DepthwiseConvFunctor<Context, T, true>
        depthwiseConv;
    depthwiseConv(dev_ctx,
                  input,
                  filter,
                  strides,
                  paddings,
                  dilations,
                  output,
                  data_layout);
  } else {
    paddle::operators::math::DepthwiseConvFunctor<Context, T, false>
        depthwiseConv;
    depthwiseConv(dev_ctx,
                  input,
                  filter,
                  strides,
                  paddings,
                  dilations,
                  output,
                  data_layout);
  }
}

}  // namespace phi

PD_REGISTER_KERNEL(depthwise_conv2d,
                   GPU,
                   ALL_LAYOUT,
                   phi::DepthwiseConvKernel,
                   float,
                   double) {}