conv_bn_fuse_pass.cc 26.4 KB
Newer Older
S
Sylwester Fraczek 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/framework/ir/conv_bn_fuse_pass.h"
W
wanghuancoder 已提交
16

S
Sylwester Fraczek 已提交
17
#include <string>
W
wanghuancoder 已提交
18

19
#include "paddle/fluid/framework/convert_utils.h"
P
Pei Yang 已提交
20
#include "paddle/fluid/framework/op_version_registry.h"
S
Sylwester Fraczek 已提交
21 22
#include "paddle/fluid/platform/enforce.h"

23
namespace phi {
24
class DenseTensor;
25
}  // namespace phi
26

W
wanghuancoder 已提交
27 28 29 30 31 32
namespace paddle {
namespace framework {
class Scope;
}  // namespace framework
}  // namespace paddle

S
Sylwester Fraczek 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
namespace paddle {
namespace framework {
namespace ir {

#define GET_CONV_BN_NODES(pattern_name)                                      \
  /* OPERATORS */                                                            \
  GET_IR_NODE_FROM_SUBGRAPH(conv, conv, pattern_name);                       \
  GET_IR_NODE_FROM_SUBGRAPH(batch_norm, batch_norm, pattern_name);           \
  /* CONV inputs */                                                          \
  GET_IR_NODE_FROM_SUBGRAPH(conv_weight, conv_weight, pattern_name);         \
  /* CONV outputs */                                                         \
  GET_IR_NODE_FROM_SUBGRAPH(conv_out, conv_out, pattern_name);               \
  /* BN inputs */                                                            \
  GET_IR_NODE_FROM_SUBGRAPH(bn_scale, bn_scale, pattern_name);               \
  GET_IR_NODE_FROM_SUBGRAPH(bn_bias, bn_bias, pattern_name);                 \
  GET_IR_NODE_FROM_SUBGRAPH(bn_mean, bn_mean, pattern_name);                 \
  GET_IR_NODE_FROM_SUBGRAPH(bn_variance, bn_variance, pattern_name);         \
  /* BN outputs */                                                           \
  GET_IR_NODE_FROM_SUBGRAPH(bn_out, bn_out, pattern_name); /* Out */         \
  GET_IR_NODE_FROM_SUBGRAPH(bn_mean_out, bn_mean_out, pattern_name);         \
  GET_IR_NODE_FROM_SUBGRAPH(bn_variance_out, bn_variance_out, pattern_name); \
  GET_IR_NODE_FROM_SUBGRAPH(bn_saved_mean, bn_saved_mean, pattern_name);     \
  GET_IR_NODE_FROM_SUBGRAPH(bn_saved_variance, bn_saved_variance, pattern_name)

void recompute_bias_and_weights(const Scope* scope,
                                ir::Node* conv_weight,            //
                                const ir::Node& bn_scale,         //
                                const LoDTensor& bn_bias_tensor,  //
                                const ir::Node& bn_mean,          //
                                const ir::Node& bn_variance,      //
63
                                LoDTensor* eltwise_y_in_tensor,   //
64 65
                                float epsilon,
                                const std::string& conv_type) {
66 67 68 69 70 71 72
  using EigenVectorArrayMap =
      Eigen::Map<Eigen::Array<float, Eigen::Dynamic, 1>>;
  using ConstEigenVectorArrayMap =
      Eigen::Map<const Eigen::Array<float, Eigen::Dynamic, 1>>;
  using EigenMatrixArrayMap = Eigen::Map<
      Eigen::Array<float, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>>;

S
Sylwester Fraczek 已提交
73
  // Re-compute bias of conv2d from BN
74
  PADDLE_ENFORCE_EQ(
75 76
      eltwise_y_in_tensor->dims(),
      bn_bias_tensor.dims(),
77 78 79 80
      platform::errors::InvalidArgument("Tensor elementwise y(%d) and batch "
                                        "norm bias(%d) must have same dims.",
                                        eltwise_y_in_tensor->dims().size(),
                                        bn_bias_tensor.dims().size()));
S
Sylwester Fraczek 已提交
81 82 83 84 85 86

  auto* scale_tensor = scope->FindVar(bn_scale.Name())->GetMutable<LoDTensor>();
  auto* variance_tensor =
      scope->FindVar(bn_variance.Name())->GetMutable<LoDTensor>();
  auto* mean_tensor = scope->FindVar(bn_mean.Name())->GetMutable<LoDTensor>();

87 88
  ConstEigenVectorArrayMap scale_array(
      scale_tensor->data<float>(), scale_tensor->numel(), 1);
89 90
  EigenVectorArrayMap variance_array(
      variance_tensor->mutable_data<float>(platform::CPUPlace()),
91 92 93 94 95 96
      variance_tensor->numel(),
      1);
  ConstEigenVectorArrayMap mean_array(
      mean_tensor->data<float>(), mean_tensor->numel(), 1);
  ConstEigenVectorArrayMap bn_bias_array(
      bn_bias_tensor.data<float>(), bn_bias_tensor.numel(), 1);
S
Sylwester Fraczek 已提交
97

98 99 100 101
  // variance will not be used anymore, so make it std_array and then tmp_array
  variance_array += epsilon;
  variance_array = variance_array.sqrt();
  variance_array = scale_array / variance_array;
102
  for (int i = 0; i < variance_tensor->numel(); i++) {
103 104
    PADDLE_ENFORCE_EQ(std::isfinite(variance_array[i]),
                      true,
105 106 107 108 109
                      platform::errors::InvalidArgument(
                          "The inverse of Fused batch norm variance "
                          "should be finite. Found nonfinite values! "
                          "Please check %s ",
                          bn_variance.Name()));
110
  }
111 112
  EigenVectorArrayMap eltwise_y_in_array(
      eltwise_y_in_tensor->mutable_data<float>(platform::CPUPlace()),
113 114
      eltwise_y_in_tensor->numel(),
      1);
115

116 117
  eltwise_y_in_array =
      ((eltwise_y_in_array - mean_array) * variance_array) + bn_bias_array;
118
  for (int i = 0; i < eltwise_y_in_tensor->numel(); i++) {
119 120
    PADDLE_ENFORCE_EQ(std::isfinite(eltwise_y_in_array[i]),
                      true,
121 122 123 124 125
                      platform::errors::InvalidArgument(
                          "Fused batch norm bias should be "
                          "finite. Found nonfinite values! "
                          "Please check %s and related variables.",
                          bn_variance.Name()));
126
  }
S
Sylwester Fraczek 已提交
127 128

  // Re-compute weight of conv2d from BN
129 130
  auto* weights = scope->FindVar(conv_weight->Name())->GetMutable<LoDTensor>();
  auto weights_shape = weights->dims();
131 132 133 134 135 136 137 138 139 140 141 142 143
  auto weights_data = weights->mutable_data<float>(platform::CPUPlace());

  // ConvTranspose weights are in IOHW format
  if (conv_type == "conv2d_transpose") {
    int kernel_size = weights_shape[2] * weights_shape[3];
    for (int i = 0; i < weights->numel();) {
      for (int j = 0; j < weights_shape[1]; ++j) {
        for (int k = 0; k < kernel_size; ++k, ++i) {
          weights_data[i] *= variance_array[j];
        }
      }
    }
  } else {
144
    auto weights_shape_2d = phi::flatten_to_2d(weights_shape, 1);
145

146 147
    EigenMatrixArrayMap weights_array_2d(
        weights_data, weights_shape_2d[0], weights_shape_2d[1]);
148

149 150
    weights_array_2d.colwise() *= variance_array;
  }
S
Sylwester Fraczek 已提交
151 152
}

W
Wangzheee 已提交
153 154 155 156 157 158 159 160 161
ConvBNFusePass::ConvBNFusePass() {
  AddOpCompat(OpCompat("conv2d"))
      .AddInput("Input")
      .IsTensor()
      .End()
      .AddInput("Filter")
      .IsTensor()
      .End()
      .AddInput("Bias")
162
      .IsTensor()
W
Wangzheee 已提交
163 164 165
      .IsOptional()
      .End()
      .AddInput("ResidualData")
166
      .IsTensor()
W
Wangzheee 已提交
167 168 169 170 171 172
      .IsOptional()
      .End()
      .AddOutput("Output")
      .IsTensor()
      .End()
      .AddAttr("strides")
173
      .IsType<std::vector<int>>()
W
Wangzheee 已提交
174 175
      .End()
      .AddAttr("paddings")
176
      .IsType<std::vector<int>>()
W
Wangzheee 已提交
177 178 179 180 181 182 183 184 185
      .End()
      .AddAttr("padding_algorithm")
      .IsOptional()
      .IsStringIn({"EXPLICIT", "SAME", "VALID"})
      .End()
      .AddAttr("groups")
      .IsNumGE(1)
      .End()
      .AddAttr("dilations")
186
      .IsType<std::vector<int>>()
W
Wangzheee 已提交
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
      .End()
      .AddAttr("data_format")
      .IsStringIn({"NCHW", "NHWC", "AnyLayout"})
      .End();

  AddOpCompat(OpCompat("batch_norm"))
      .AddInput("X")
      .IsTensor()
      .End()
      .AddInput("Scale")
      .IsTensor()
      .End()
      .AddInput("Bias")
      .IsTensor()
      .End()
      .AddInput("Mean")
      .IsTensor()
      .End()
      .AddInput("Variance")
      .IsTensor()
      .End()
      .AddOutput("MeanOut")
      .IsTensor()
      .End()
      .AddOutput("VarianceOut")
      .IsTensor()
      .End()
      .AddOutput("SavedMean")
      .IsTensor()
      .End()
      .AddOutput("SavedVariance")
      .IsTensor()
      .End()
      .AddOutput("Y")
      .IsTensor()
      .End()
223 224 225 226
      .AddOutput("ReserveSpace")
      .IsTensor()
      .IsOptional()
      .End()
W
Wangzheee 已提交
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
      .AddAttr("epsilon")
      .IsNumLE(0.001f)
      .IsNumGE(0.0f)
      .End();

  AddOpCompat(OpCompat("elementwise_add"))
      .AddInput("X")
      .IsTensor()
      .End()
      .AddInput("Y")
      .IsTensor()
      .End()
      .AddOutput("Out")
      .IsTensor()
      .End()
      .AddAttr("axis")
      .IsNumEQ(1)
      .End();
}

247
void ConvBNFusePass::ApplyImpl(ir::Graph* graph) const {
248 249
  PADDLE_ENFORCE_NOT_NULL(
      graph, platform::errors::InvalidArgument("Graph cannot be nullptr."));
250
  FusePassBase::Init(name_scope_, graph);
S
Sylwester Fraczek 已提交
251 252

  auto* scope = param_scope();
253 254
  PADDLE_ENFORCE_NOT_NULL(
      scope, platform::errors::InvalidArgument("Scope cannot be nullptr."));
S
Sylwester Fraczek 已提交
255 256 257 258 259 260

  GraphPatternDetector gpd;
  auto* conv_input =
      gpd.mutable_pattern()
          ->NewNode(patterns::PDNodeName(name_scope_, "conv_input"))
          ->AsInput()
261
          ->assert_is_op_input(conv_type(), "Input");
S
Sylwester Fraczek 已提交
262
  patterns::ConvBN conv_bn_pattern(gpd.mutable_pattern(), name_scope_);
263
  conv_bn_pattern(conv_input, conv_type(), false /*with_eltwise_add*/);
S
Sylwester Fraczek 已提交
264 265 266 267

  int found_conv_bn_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
W
Wangzheee 已提交
268 269 270 271
    if (!IsCompat(subgraph, g)) {
      LOG(WARNING) << "Pass in op compat failed.";
      return;
    }
272
    VLOG(4) << "handle " + conv_type() + "BN fuse";
S
Sylwester Fraczek 已提交
273 274 275
    // conv, batch_norm,
    // conv_weight, conv_out,
    // bn_scale, bn_bias, bn_mean, bn_variance,
W
Wojciech Uss 已提交
276 277
    // bn_out, bn_mean_out, bn_variance_out, bn_saved_mean,
    // bn_saved_variance
S
Sylwester Fraczek 已提交
278 279
    GET_CONV_BN_NODES(conv_bn_pattern);

W
Wojciech Uss 已提交
280 281 282
    // check if fuse can be done and if MKL-DNN should be used
    FuseOptions fuse_option = FindFuseOption(*conv, *batch_norm);
    if (fuse_option == DO_NOT_FUSE) {
283
      VLOG(3) << "do not perform " + conv_type() + " bn fuse";
W
Wojciech Uss 已提交
284 285 286
      return;
    }

287 288 289 290
    // Get batch norm bias
    auto* bn_bias_tensor =
        scope->FindVar(bn_bias->Name())->GetMutable<LoDTensor>();

S
Sylwester Fraczek 已提交
291 292
    // Create eltwise_y (conv bias) variable
    VarDesc eltwise_y_in_desc(
293
        patterns::PDNodeName("fuse_conv_bn", conv_type() + "_eltwise_y_in"));
294
    eltwise_y_in_desc.SetShape(phi::vectorize(bn_bias_tensor->dims()));
295 296
    eltwise_y_in_desc.SetDataType(
        framework::TransToProtoVarType(bn_bias_tensor->dtype()));
297
    eltwise_y_in_desc.SetLoDLevel(bn_bias->Var()->GetLoDLevel());
W
Wojciech Uss 已提交
298
    eltwise_y_in_desc.SetPersistable(true);
S
Sylwester Fraczek 已提交
299 300 301 302 303 304 305
    auto* eltwise_y_in_node = g->CreateVarNode(&eltwise_y_in_desc);
    auto* eltwise_y_in_tensor =
        scope->Var(eltwise_y_in_node->Name())->GetMutable<LoDTensor>();

    // Initialize eltwise_y
    eltwise_y_in_tensor->Resize(bn_bias_tensor->dims());
    std::fill_n(eltwise_y_in_tensor->mutable_data<float>(platform::CPUPlace()),
306 307
                eltwise_y_in_tensor->numel(),
                0.0f);
S
Sylwester Fraczek 已提交
308 309

    // update weights and biases
310 311
    float epsilon =
        BOOST_GET_CONST(float, batch_norm->Op()->GetAttr("epsilon"));
312 313 314 315 316 317 318 319 320
    recompute_bias_and_weights(scope,
                               conv_weight,
                               *bn_scale,
                               *bn_bias_tensor,
                               *bn_mean,
                               *bn_variance,
                               eltwise_y_in_tensor,
                               epsilon,
                               conv_type());
S
Sylwester Fraczek 已提交
321

W
Wojciech Uss 已提交
322 323 324 325
    // with MKL-DNN fuse conv+bn into conv with bias
    // without MKL-DNN fuse conv+bn into conv+elementwise_add
    if (fuse_option == FUSE_MKLDNN) {
      auto input_names = conv->Op()->InputNames();
326 327 328
      bool has_bias =
          std::find(input_names.begin(), input_names.end(), "Bias") !=
          input_names.end();
W
Wojciech Uss 已提交
329 330 331
      if (has_bias && conv->Op()->Input("Bias").size() > 0) {
        // reuse existing conv bias node
        auto conv_bias_names = conv->Op()->Input("Bias");
332
        PADDLE_ENFORCE_EQ(
333 334
            conv_bias_names.size(),
            1UL,
335
            platform::errors::InvalidArgument("Find input var Bais error."));
W
Wojciech Uss 已提交
336 337
        auto* conv_bias_var = scope->FindVar(conv_bias_names[0]);
        auto* conv_bias_tensor = conv_bias_var->GetMutable<LoDTensor>();
338
        PADDLE_ENFORCE_EQ(
339 340
            conv_bias_tensor->dims(),
            eltwise_y_in_tensor->dims(),
341 342 343 344 345
            platform::errors::InvalidArgument(
                "Tensor convolution bias(%d) and elementwise y(%d) "
                "must have same dims.",
                conv_bias_tensor->dims().size(),
                eltwise_y_in_tensor->dims().size()));
W
Wojciech Uss 已提交
346 347 348 349 350 351 352 353 354 355 356

        auto eigen_conv_bias = EigenVector<float>::From(*conv_bias_tensor);
        eigen_conv_bias += EigenVector<float>::From(*eltwise_y_in_tensor);
      } else {
        // add new conv_bias node
        conv->Op()->SetInput(
            "Bias", std::vector<std::string>({eltwise_y_in_node->Name()}));
        IR_NODE_LINK_TO(eltwise_y_in_node, conv);
      }
      conv->Op()->SetOutput("Output",
                            std::vector<std::string>({bn_out->Name()}));
W
Wangzheee 已提交
357 358 359 360
      if (!IsCompat(*conv->Op())) {
        LOG(WARNING) << "conv_bn fuse pass in out conv op compat failed.";
        return;
      }
361 362 363 364 365 366 367 368 369 370 371
      GraphSafeRemoveNodes(graph,
                           {conv_out,
                            bn_scale,
                            bn_bias,
                            bn_mean,
                            bn_variance,
                            batch_norm,
                            bn_mean_out,
                            bn_variance_out,
                            bn_saved_mean,
                            bn_saved_variance});
W
Wojciech Uss 已提交
372 373 374 375 376 377 378 379 380 381 382

      IR_NODE_LINK_TO(conv, bn_out);
      found_conv_bn_count++;
    } else {  // fuse_option == FUSE_NATIVE
      // create an elementwise add node.
      OpDesc desc;
      desc.SetInput("X", std::vector<std::string>({conv_out->Name()}));
      desc.SetInput("Y", std::vector<std::string>({eltwise_y_in_node->Name()}));
      desc.SetOutput("Out", std::vector<std::string>({bn_out->Name()}));
      desc.SetType("elementwise_add");
      desc.SetAttr("axis", 1);
W
Wangzheee 已提交
383 384 385 386 387
      if (!IsCompat(desc)) {
        LOG(WARNING)
            << "conv_bn fuse pass in out elementwise_add op compat failed.";
        return;
      }
W
Wojciech Uss 已提交
388 389
      auto eltwise_op = g->CreateOpNode(&desc);  // OpDesc will be copied.

390 391 392 393 394 395 396 397 398 399
      GraphSafeRemoveNodes(graph,
                           {bn_scale,
                            bn_bias,
                            bn_mean,
                            bn_variance,
                            batch_norm,
                            bn_mean_out,
                            bn_variance_out,
                            bn_saved_mean,
                            bn_saved_variance});
W
Wojciech Uss 已提交
400 401 402 403 404 405

      IR_NODE_LINK_TO(conv_out, eltwise_op);
      IR_NODE_LINK_TO(eltwise_y_in_node, eltwise_op);
      IR_NODE_LINK_TO(eltwise_op, bn_out);
      found_conv_bn_count++;
    }
S
Sylwester Fraczek 已提交
406 407
  };

408
  gpd(graph, handler);
S
Sylwester Fraczek 已提交
409 410 411 412

  AddStatis(found_conv_bn_count);
}

W
Wangzheee 已提交
413 414 415 416 417 418 419 420 421
ConvEltwiseAddBNFusePass::ConvEltwiseAddBNFusePass() {
  AddOpCompat(OpCompat("conv2d"))
      .AddInput("Input")
      .IsTensor()
      .End()
      .AddInput("Filter")
      .IsTensor()
      .End()
      .AddInput("Bias")
422
      .IsTensor()
W
Wangzheee 已提交
423 424 425
      .IsOptional()
      .End()
      .AddInput("ResidualData")
426
      .IsTensor()
W
Wangzheee 已提交
427 428 429 430 431 432
      .IsOptional()
      .End()
      .AddOutput("Output")
      .IsTensor()
      .End()
      .AddAttr("strides")
433
      .IsType<std::vector<int>>()
W
Wangzheee 已提交
434 435
      .End()
      .AddAttr("paddings")
436
      .IsType<std::vector<int>>()
W
Wangzheee 已提交
437 438 439 440 441 442 443 444 445
      .End()
      .AddAttr("padding_algorithm")
      .IsStringIn({"EXPLICIT", "SAME", "VALID"})
      .IsOptional()
      .End()
      .AddAttr("groups")
      .IsNumGE(1)
      .End()
      .AddAttr("dilations")
446
      .IsType<std::vector<int>>()
W
Wangzheee 已提交
447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
      .End()
      .AddAttr("data_format")
      .IsStringIn({"NCHW", "NHWC", "AnyLayout"})
      .End();

  AddOpCompat(OpCompat("batch_norm"))
      .AddInput("X")
      .IsTensor()
      .End()
      .AddInput("Scale")
      .IsTensor()
      .End()
      .AddInput("Bias")
      .IsTensor()
      .End()
      .AddInput("Mean")
      .IsTensor()
      .End()
      .AddInput("Variance")
      .IsTensor()
      .End()
      .AddOutput("MeanOut")
      .IsTensor()
      .End()
      .AddOutput("VarianceOut")
      .IsTensor()
      .End()
      .AddOutput("SavedMean")
      .IsTensor()
      .End()
      .AddOutput("SavedVariance")
      .IsTensor()
      .End()
      .AddOutput("Y")
      .IsTensor()
      .End()
483 484 485 486
      .AddOutput("ReserveSpace")
      .IsTensor()
      .IsOptional()
      .End()
W
Wangzheee 已提交
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
      .AddAttr("epsilon")
      .IsNumLE(0.001f)
      .IsNumGE(0.0f)
      .End();

  AddOpCompat(OpCompat("elementwise_add"))
      .AddInput("X")
      .IsTensor()
      .End()
      .AddInput("Y")
      .IsTensor()
      .End()
      .AddOutput("Out")
      .IsTensor()
      .End()
      .AddAttr("axis")
      .IsNumEQ(1)
      .End();
}

507
void ConvEltwiseAddBNFusePass::ApplyImpl(ir::Graph* graph) const {
508 509
  PADDLE_ENFORCE_NOT_NULL(
      graph, platform::errors::InvalidArgument("Graph cannot be nullptr."));
510
  FusePassBase::Init(name_scope_, graph);
S
Sylwester Fraczek 已提交
511 512

  auto* scope = param_scope();
513 514
  PADDLE_ENFORCE_NOT_NULL(
      scope, platform::errors::InvalidArgument("Scope cannot be nullptr."));
S
Sylwester Fraczek 已提交
515 516 517 518 519 520

  GraphPatternDetector gpd;
  auto* conv_input =
      gpd.mutable_pattern()
          ->NewNode(patterns::PDNodeName(name_scope_, "conv_input"))
          ->AsInput()
521
          ->assert_is_op_input(conv_type(), "Input");
S
Sylwester Fraczek 已提交
522
  patterns::ConvBN conv_bn_pattern(gpd.mutable_pattern(), name_scope_);
523
  conv_bn_pattern(conv_input, conv_type(), true /*with_eltwise_add*/);
S
Sylwester Fraczek 已提交
524 525 526 527

  int found_conv_bn_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
W
Wangzheee 已提交
528 529 530 531
    if (!IsCompat(subgraph, g)) {
      LOG(WARNING) << "Pass in op compat failed.";
      return;
    }
532
    VLOG(4) << "handle " + conv_type() + "BN fuse";
S
Sylwester Fraczek 已提交
533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
    // conv, batch_norm,
    // conv_weight, conv_out,
    // bn_scale, bn_bias, bn_mean, bn_variance,
    // bn_out, bn_mean_out, bn_variance_out, bn_saved_mean,bn_saved_variance
    GET_CONV_BN_NODES(conv_bn_pattern);
    // OPERATORS
    GET_IR_NODE_FROM_SUBGRAPH(eltwise, eltwise, conv_bn_pattern);
    // BIAS inputs
    GET_IR_NODE_FROM_SUBGRAPH(eltwise_y_in, eltwise_y_in, conv_bn_pattern);
    // BIAS outputs
    GET_IR_NODE_FROM_SUBGRAPH(eltwise_out, eltwise_out, conv_bn_pattern);

    // Get eltwise_y (conv bias) variable
    auto* eltwise_y_in_tensor =
        scope->FindVar(eltwise_y_in->Name())->GetMutable<LoDTensor>();

    // Get batch norm bias
    auto* bn_bias_tensor =
        scope->FindVar(bn_bias->Name())->GetMutable<LoDTensor>();

    // update weights and biases
554 555
    float epsilon =
        BOOST_GET_CONST(float, batch_norm->Op()->GetAttr("epsilon"));
556 557 558 559 560 561 562 563

    // if bias is an input to other ops as well then we cannot overwrite it
    // so we create separate elementwise Y in nodes
    if (eltwise_y_in->outputs.size() > 1) {
      // Make a copy of eltwise Y input tensor
      // Create eltwise_y (conv bias) variable
      VarDesc eltwise_y_in_desc(patterns::PDNodeName(
          name_scope_, "eltwise_y_in" + std::to_string(found_conv_bn_count)));
564
      eltwise_y_in_desc.SetShape(phi::vectorize(eltwise_y_in_tensor->dims()));
565 566
      eltwise_y_in_desc.SetDataType(
          framework::TransToProtoVarType(eltwise_y_in_tensor->dtype()));
567 568 569 570 571 572 573
      eltwise_y_in_desc.SetLoDLevel(eltwise_y_in->Var()->GetLoDLevel());
      eltwise_y_in_desc.SetPersistable(true);
      auto* eltwise_y_in_node = g->CreateVarNode(&eltwise_y_in_desc);
      auto* eltwise_y_in_tensor_ex =
          scope->Var(eltwise_y_in_node->Name())->GetMutable<LoDTensor>();

      // Initialize eltwise_y
574 575 576 577 578 579 580 581 582 583 584 585
      TensorCopy(
          *eltwise_y_in_tensor, platform::CPUPlace(), eltwise_y_in_tensor_ex);

      recompute_bias_and_weights(scope,
                                 conv_weight,
                                 *bn_scale,
                                 *bn_bias_tensor,
                                 *bn_mean,
                                 *bn_variance,
                                 eltwise_y_in_tensor_ex,
                                 epsilon,
                                 conv_type());
586 587 588 589 590 591 592 593 594 595 596 597 598 599
      // Set new var
      eltwise->Op()->RenameInput(eltwise_y_in->Name(),
                                 eltwise_y_in_node->Name());
      // Link new bias node to eltwise
      IR_NODE_LINK_TO(eltwise_y_in_node, eltwise);
      // unlink original bias from eltwise_op
      eltwise_y_in->outputs.erase(
          std::remove_if(eltwise_y_in->outputs.begin(),
                         eltwise_y_in->outputs.end(),
                         [&](Node*& n) {
                           return n->id() == eltwise->id() ? true : false;
                         }),
          eltwise_y_in->outputs.end());
    } else {
600 601 602 603 604 605 606 607 608
      recompute_bias_and_weights(scope,
                                 conv_weight,
                                 *bn_scale,
                                 *bn_bias_tensor,
                                 *bn_mean,
                                 *bn_variance,
                                 eltwise_y_in_tensor,
                                 epsilon,
                                 conv_type());
609
    }
S
Sylwester Fraczek 已提交
610 611 612 613

    // Update the elementwise_add node
    eltwise->Op()->SetAttr("axis", 1);
    eltwise->Op()->SetOutput("Out", std::vector<std::string>({bn_out->Name()}));
W
Wangzheee 已提交
614 615 616 617 618
    if (!IsCompat(*eltwise->Op())) {
      LOG(WARNING)
          << "conv_eltwise_bn fuse pass in out eltwise op compat failed.";
      return;
    }
619 620 621 622 623 624 625 626 627 628 629
    GraphSafeRemoveNodes(graph,
                         {bn_scale,
                          bn_bias,
                          bn_mean,
                          bn_variance,
                          batch_norm,
                          bn_mean_out,
                          bn_variance_out,
                          bn_saved_mean,
                          bn_saved_variance,
                          eltwise_out});
S
Sylwester Fraczek 已提交
630 631 632 633 634 635

    IR_NODE_LINK_TO(eltwise, bn_out);

    found_conv_bn_count++;
  };

636
  gpd(graph, handler);
S
Sylwester Fraczek 已提交
637 638 639 640

  AddStatis(found_conv_bn_count);
}

W
Wangzheee 已提交
641 642 643 644 645 646 647 648 649
ConvTransposeBNFusePass::ConvTransposeBNFusePass() {
  AddOpCompat(OpCompat("conv2d_transpose"))
      .AddInput("Input")
      .IsTensor()
      .End()
      .AddInput("Filter")
      .IsTensor()
      .End()
      .AddInput("Bias")
650
      .IsTensor()
W
Wangzheee 已提交
651 652 653 654 655
      .IsOptional()
      .End()
      .AddOutput("Output")
      .IsTensor()
      .End()
656 657 658 659 660 661 662 663 664
      .AddAttr("output_padding")
      .IsType<std::vector<int>>()
      .IsOptional()
      .End()
      .AddAttr("output_size")
      .IsType<std::vector<int>>()
      .IsOptional()
      .End()
      .AddAttr("groups")
665
      .IsNumEQ(1)
666 667 668 669
      .End()
      .AddAttr("dilations")
      .IsType<std::vector<int>>()
      .End()
W
Wangzheee 已提交
670
      .AddAttr("strides")
671
      .IsType<std::vector<int>>()
W
Wangzheee 已提交
672 673
      .End()
      .AddAttr("paddings")
674
      .IsType<std::vector<int>>()
W
Wangzheee 已提交
675 676
      .End()
      .AddAttr("padding_algorithm")
677
      .IsOptional()
W
Wangzheee 已提交
678
      .IsStringIn({"EXPLICIT", "SAME", "VALID"})
679 680
      .End()
      .AddAttr("data_format")
681
      .IsStringIn({"NCHW", "AnyLayout"})
682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705
      .End();
}

ConvTransposeEltwiseAddBNFusePass::ConvTransposeEltwiseAddBNFusePass() {
  AddOpCompat(OpCompat("conv2d_transpose"))
      .AddInput("Input")
      .IsTensor()
      .End()
      .AddInput("Filter")
      .IsTensor()
      .End()
      .AddInput("Bias")
      .IsTensor()
      .IsOptional()
      .End()
      .AddOutput("Output")
      .IsTensor()
      .End()
      .AddAttr("output_padding")
      .IsType<std::vector<int>>()
      .IsOptional()
      .End()
      .AddAttr("output_size")
      .IsType<std::vector<int>>()
W
Wangzheee 已提交
706 707 708
      .IsOptional()
      .End()
      .AddAttr("groups")
709
      .IsNumEQ(1)
W
Wangzheee 已提交
710 711
      .End()
      .AddAttr("dilations")
712 713 714 715 716 717 718 719 720
      .IsType<std::vector<int>>()
      .End()
      .AddAttr("strides")
      .IsType<std::vector<int>>()
      .End()
      .AddAttr("paddings")
      .IsType<std::vector<int>>()
      .End()
      .AddAttr("padding_algorithm")
721
      .IsOptional()
722
      .IsStringIn({"EXPLICIT", "SAME", "VALID"})
W
Wangzheee 已提交
723 724
      .End()
      .AddAttr("data_format")
725
      .IsStringIn({"NCHW", "AnyLayout"})
W
Wangzheee 已提交
726 727 728
      .End();
}

729 730
DepthwiseConvBNFusePass::DepthwiseConvBNFusePass() {
  AddOpCompat(OpCompat("depthwise_conv2d"))
W
Wangzheee 已提交
731 732 733 734 735 736 737
      .AddInput("Input")
      .IsTensor()
      .End()
      .AddInput("Filter")
      .IsTensor()
      .End()
      .AddInput("Bias")
738 739 740 741 742
      .IsTensor()
      .IsOptional()
      .End()
      .AddInput("ResidualData")
      .IsTensor()
W
Wangzheee 已提交
743 744 745 746 747 748
      .IsOptional()
      .End()
      .AddOutput("Output")
      .IsTensor()
      .End()
      .AddAttr("strides")
749
      .IsType<std::vector<int>>()
W
Wangzheee 已提交
750 751
      .End()
      .AddAttr("paddings")
752
      .IsType<std::vector<int>>()
W
Wangzheee 已提交
753 754 755
      .End()
      .AddAttr("padding_algorithm")
      .IsOptional()
756
      .IsStringIn({"EXPLICIT", "SAME", "VALID"})
W
Wangzheee 已提交
757 758 759 760 761
      .End()
      .AddAttr("groups")
      .IsNumGE(1)
      .End()
      .AddAttr("dilations")
762
      .IsType<std::vector<int>>()
W
Wangzheee 已提交
763 764 765 766 767 768
      .End()
      .AddAttr("data_format")
      .IsStringIn({"NCHW", "NHWC", "AnyLayout"})
      .End();
}

S
Sylwester Fraczek 已提交
769 770 771 772 773 774 775
}  // namespace ir
}  // namespace framework
}  // namespace paddle

REGISTER_PASS(conv_bn_fuse_pass, paddle::framework::ir::ConvBNFusePass);
REGISTER_PASS(conv_eltwiseadd_bn_fuse_pass,
              paddle::framework::ir::ConvEltwiseAddBNFusePass);
776 777 778 779
REGISTER_PASS(conv_transpose_bn_fuse_pass,
              paddle::framework::ir::ConvTransposeBNFusePass);
REGISTER_PASS(conv_transpose_eltwiseadd_bn_fuse_pass,
              paddle::framework::ir::ConvTransposeEltwiseAddBNFusePass);
780 781 782 783
REGISTER_PASS(depthwise_conv_bn_fuse_pass,
              paddle::framework::ir::DepthwiseConvBNFusePass);
REGISTER_PASS(depthwise_conv_eltwiseadd_bn_fuse_pass,
              paddle::framework::ir::DepthwiseConvEltwiseAddBNFusePass);
P
Pei Yang 已提交
784 785 786
REGISTER_PASS_CAPABILITY(conv_bn_fuse_pass)
    .AddCombination(
        paddle::framework::compatible::OpVersionComparatorCombination()
787
            .LE("conv2d", 1)
P
Pei Yang 已提交
788 789 790 791
            .EQ("batch_norm", 0));
REGISTER_PASS_CAPABILITY(conv_eltwiseadd_bn_fuse_pass)
    .AddCombination(
        paddle::framework::compatible::OpVersionComparatorCombination()
792
            .LE("conv2d", 1)
793
            .LE("elementwise_add", 1)
P
Pei Yang 已提交
794
            .EQ("batch_norm", 0));
795 796 797 798 799 800
REGISTER_PASS_CAPABILITY(conv_transpose_eltwiseadd_bn_fuse_pass)
    .AddCombination(
        paddle::framework::compatible::OpVersionComparatorCombination()
            .LE("conv2d_transpose", 2)
            .LE("elementwise_add", 1)
            .EQ("batch_norm", 0));
801 802 803 804 805
REGISTER_PASS_CAPABILITY(conv_transpose_bn_fuse_pass)
    .AddCombination(
        paddle::framework::compatible::OpVersionComparatorCombination()
            .LE("conv2d_transpose", 2)
            .EQ("batch_norm", 0));