ContextProjection.cpp 7.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "ContextProjection.h"
Y
Yu Yang 已提交
16
#include "paddle/utils/Stat.h"
Z
zhangjinchao01 已提交
17 18 19 20 21 22

namespace paddle {

REGISTER_PROJECTION(context, ContextProjection);

ContextProjection::ContextProjection(const ProjectionConfig& config,
23 24
                                     ParameterPtr parameter,
                                     bool useGpu)
Z
zhangjinchao01 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
    : Projection(config, parameter, useGpu) {
  CHECK(config.has_context_start());
  CHECK(config.has_context_length());
  if (config.context_start() == 0 && config.context_length() == 1) {
    config_.set_trainable_padding(false);
  }
  if (config_.trainable_padding()) {
    CHECK(parameter);
    beginPad_ = std::max(0, -config.context_start());
    endPad_ = std::max(0, config.context_start() + config.context_length() - 1);
    size_t totalPad = beginPad_ + endPad_;
    size_t inputDim = parameter->getSize() / totalPad;
    CHECK_EQ(config.input_size(), inputDim);
    CHECK_EQ(inputDim * totalPad, parameter->getSize());
    weight_.reset(new Weight(totalPad, inputDim, parameter));
  }
41 42 43 44 45 46 47 48 49
  // init forward_ and backward_ functions
  init();
}

bool ContextProjection::init() {
  size_t context_length = config_.context_length();
  int context_start = config_.context_start();
  bool is_padding = config_.trainable_padding();
  size_t total_pad = is_padding ? beginPad_ + endPad_ : 0;
50 51 52 53 54 55

  createFunction(forward_,
                 "ContextProjectionForward",
                 FuncConfig()
                     .set("context_length", context_length)
                     .set("context_start", context_start)
56
                     .set("begin_pad", beginPad_));
57 58 59 60 61 62 63 64 65
  createFunction(backward_,
                 "ContextProjectionBackward",
                 FuncConfig()
                     .set("context_length", context_length)
                     .set("context_start", context_start)
                     .set("begin_pad", beginPad_)
                     .set("is_padding", is_padding)
                     .set("total_pad", total_pad));

66
  return true;
Z
zhangjinchao01 已提交
67 68 69 70 71 72
}

void ContextProjection::resetState() {
  CHECK_LE(config_.context_start() + config_.context_length(), 1)
      << "state is not allowed for future context";
  if (config_.context_start() >= 0) return;
73 74 75
  Matrix::resizeOrCreate(state_,
                         -config_.context_start(),
                         config_.input_size(),
Z
zhangjinchao01 已提交
76 77
                         false,  // trans
                         useGpu_);
78 79
  Matrix::resizeOrCreate(state2_,
                         -config_.context_start(),
Z
zhangjinchao01 已提交
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
                         config_.input_size(),
                         false,  // trans
                         useGpu_);
  if (config_.trainable_padding()) {
    state_->assign(*weight_->getW()->subMatrix(0, -config_.context_start()));
  } else {
    state_->zeroMem();
  }
}

void ContextProjection::setState(LayerStatePtr state) {
  CHECK(state->value.size() == 1)
      << "one matrix is expected for ContextProjection state";
  state_->copyFrom(*(state->value[0]));
}

LayerStatePtr ContextProjection::getState() {
  if (state_ == nullptr) {
    return nullptr;
  }
  LayerStatePtr res = std::make_shared<LayerState>();
  res->value.push_back(state_->clone(0, 0, false));
  res->value[0]->copyFrom(*state_);
  return res;
}

void ContextProjection::forward() {
107
  CHECK(in_->value && out_->value);
Z
zhangjinchao01 已提交
108 109
  CHECK(in_->sequenceStartPositions);

110 111 112 113
  size_t input_dim = in_->value->getWidth();
  size_t dim = out_->value->getWidth();
  CHECK_EQ(dim, input_dim * config_.context_length());
  size_t batch_size = in_->value->getHeight();
L
liaogang 已提交
114 115
  CHECK_EQ(static_cast<int>(forward_.size()), 1)
      << "Only one forward function here";
Z
zhangjinchao01 已提交
116 117

  REGISTER_TIMER_INFO("ContextProjectionForward", getName().c_str());
118 119 120 121 122 123 124 125 126 127 128 129 130
  bool is_padding = config_.trainable_padding();
  /// first use state_, otherwise use weight_(padding false === w nullptr)
  auto w_ptr =
      state_ ? state_.get() : is_padding ? weight_->getW().get() : nullptr;
  auto start_pos = in_->sequenceStartPositions;
  forward_[0]->calc({Tensor(in_->value->getData(), Dims{batch_size, input_dim}),
                     Tensor(w_ptr ? w_ptr->getData() : nullptr,
                            Dims{w_ptr ? w_ptr->getHeight() : 0, input_dim}),
                     Tensor(reinterpret_cast<real*>(
                                const_cast<int*>(start_pos->getData(useGpu_))),
                            Dims{start_pos->getSize()})},
                    {Tensor(out_->value->getData(), Dims{batch_size, dim})},
                    {});
Z
zhangjinchao01 已提交
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151

  if (state_ && config_.context_start() < 0) {
    CHECK_EQ(1, in_->getNumSequences());
    const int* starts = in_->sequenceStartPositions->getData(false);
    int length = starts[1] - starts[0];
    if (-config_.context_start() <= length) {
      MatrixPtr sub = in_->value->subMatrix(starts[1] + config_.context_start(),
                                            -config_.context_start());
      state_->copyFrom(*sub);
    } else {
      int prevLength = -config_.context_start() - length;
      state2_->subMatrix(0, prevLength)
          ->copyFrom(*state_->subMatrix(length, prevLength));
      state2_->subMatrix(prevLength, length)
          ->copyFrom(*in_->value->subMatrix(starts[0], length));
      std::swap(state_, state2_);
    }
  }
}

void ContextProjection::backward(const UpdateCallback& callback) {
152 153 154 155 156 157
  CHECK(in_->value && out_->value && out_->grad);
  size_t input_dim = in_->value->getWidth();
  size_t dim = out_->value->getWidth();
  CHECK_EQ(dim, input_dim * config_.context_length());
  size_t batch_size = in_->value->getHeight();
  CHECK_EQ(batch_size, out_->value->getHeight());
L
liaogang 已提交
158 159
  CHECK_EQ(static_cast<int>(backward_.size()), 1)
      << "Only one backward function here";
Z
zhangjinchao01 已提交
160 161

  REGISTER_TIMER_INFO("ContextProjectionBackward", getName().c_str());
162 163
  bool is_padding = config_.trainable_padding();
  auto start_pos = in_->sequenceStartPositions;
164 165 166 167 168 169 170 171 172 173
  auto w_ptr = is_padding ? weight_->getWGrad() : nullptr;
  backward_[0]->calc({Tensor(in_->grad ? in_->grad->getData() : nullptr,
                             Dims{batch_size, input_dim}),
                      Tensor(w_ptr ? w_ptr->getData() : nullptr,
                             Dims{w_ptr ? w_ptr->getHeight() : 0, input_dim}),
                      Tensor(reinterpret_cast<real*>(
                                 const_cast<int*>(start_pos->getData(useGpu_))),
                             Dims{start_pos->getSize()})},
                     {Tensor(out_->grad->getData(), Dims{batch_size, dim})},
                     {});
Z
zhangjinchao01 已提交
174 175 176 177 178 179 180

  if (config_.trainable_padding()) {
    weight_->getParameterPtr()->incUpdate(callback);
  }
}

}  // namespace paddle