analysis_predictor.cc 33.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

Y
Yan Chunwei 已提交
15
#include "paddle/fluid/inference/api/analysis_predictor.h"
16 17
#include <glog/logging.h>
#include <algorithm>
N
nhzlx 已提交
18
#include <fstream>
19
#include <memory>
20
#include <set>
21
#include <string>
22
#include <utility>
23
#include <vector>
24
#include "paddle/fluid/framework/feed_fetch_method.h"
25
#include "paddle/fluid/framework/feed_fetch_type.h"
Y
Yan Chunwei 已提交
26
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
27
#include "paddle/fluid/framework/ir/pass.h"
28
#include "paddle/fluid/framework/naive_executor.h"
29
#include "paddle/fluid/framework/scope.h"
Y
Yan Chunwei 已提交
30
#include "paddle/fluid/framework/var_type_traits.h"
31
#include "paddle/fluid/framework/version.h"
32
#include "paddle/fluid/inference/analysis/helper.h"
Y
Yan Chunwei 已提交
33
#include "paddle/fluid/inference/analysis/passes/memory_optimize_pass.h"
34
#include "paddle/fluid/inference/api/helper.h"
35
#include "paddle/fluid/inference/api/paddle_inference_api.h"
L
luotao1 已提交
36
#include "paddle/fluid/inference/api/paddle_inference_pass.h"
37
#include "paddle/fluid/inference/utils/singleton.h"
38
#include "paddle/fluid/memory/memcpy.h"
39
#include "paddle/fluid/platform/cpu_helper.h"
40
#include "paddle/fluid/platform/gpu_info.h"
41
#include "paddle/fluid/platform/place.h"
T
tensor-tang 已提交
42 43
#include "paddle/fluid/platform/profiler.h"

44 45 46 47
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/inference/api/mkldnn_quantizer.h"
#endif

Y
Yan Chunwei 已提交
48 49
#if PADDLE_WITH_TENSORRT
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
50
#include "paddle/fluid/inference/tensorrt/trt_int8_calibrator.h"
Y
Yan Chunwei 已提交
51 52
#endif

N
nhzlx 已提交
53
#if PADDLE_WITH_ANAKIN
54
#include "paddle/fluid/inference/anakin/convert/op_converter.h"
N
nhzlx 已提交
55
#endif
56

57 58
namespace paddle {

N
nhzlx 已提交
59
using inference::Singleton;
N
nhzlx 已提交
60
#if PADDLE_WITH_TENSORRT
N
nhzlx 已提交
61
using inference::tensorrt::TRTInt8Calibrator;
N
nhzlx 已提交
62 63
using inference::tensorrt::TRTCalibratorEngine;
using inference::tensorrt::TRTCalibratorEngineManager;
N
nhzlx 已提交
64
#endif
65

66 67 68 69
namespace {
bool IsPersistable(const framework::VarDesc *var) {
  if (var->Persistable() &&
      var->GetType() != framework::proto::VarType::FEED_MINIBATCH &&
70 71
      var->GetType() != framework::proto::VarType::FETCH_LIST &&
      var->GetType() != framework::proto::VarType::RAW) {
72 73 74 75 76 77
    return true;
  }
  return false;
}
}  // namespace

Y
Yan Chunwei 已提交
78
bool AnalysisPredictor::Init(
79 80
    const std::shared_ptr<framework::Scope> &parent_scope,
    const std::shared_ptr<framework::ProgramDesc> &program) {
M
minqiyang 已提交
81
  VLOG(3) << "Predictor::init()";
82 83
  if (config_.with_profile_) {
    LOG(WARNING) << "Profiler is activated, which might affect the performance";
84 85
    auto tracking_device = config_.use_gpu() ? platform::ProfilerState::kAll
                                             : platform::ProfilerState::kCPU;
T
tensor-tang 已提交
86
    platform::EnableProfiler(tracking_device);
87 88 89
  } else {
    LOG(INFO) << "Profiler is deactivated, and no profiling report will be "
                 "generated.";
T
tensor-tang 已提交
90 91
  }

92
  // no matter with or without MKLDNN
L
luotao1 已提交
93
  paddle::platform::SetNumThreads(config_.cpu_math_library_num_threads());
94

95 96 97 98 99 100 101 102 103 104 105 106 107
  if (!PrepareScope(parent_scope)) {
    return false;
  }
  if (!CreateExecutor()) {
    return false;
  }
  if (!PrepareProgram(program)) {
    return false;
  }

  // Prepare executor, create local variables.
  if (!PrepareExecutor()) {
    return true;
Y
Yan Chunwei 已提交
108
  }
109 110 111 112 113 114 115 116 117

  // Get the feed_target_names and fetch_target_names
  PrepareFeedFetch();

  return true;
}

bool AnalysisPredictor::PrepareScope(
    const std::shared_ptr<framework::Scope> &parent_scope) {
Y
Yan Chunwei 已提交
118
  if (parent_scope) {
119 120 121
    PADDLE_ENFORCE_NOT_NULL(
        parent_scope,
        "Both program and parent_scope should be set in Clone mode.");
Y
Yan Chunwei 已提交
122
    scope_ = parent_scope;
123
    status_is_cloned_ = true;
Y
Yan Chunwei 已提交
124
  } else {
Z
Zhaolong Xing 已提交
125
    if (config_.use_gpu_) {
126
      paddle::framework::InitDevices(false);
Z
Zhaolong Xing 已提交
127 128 129
    } else {
      paddle::framework::InitDevices(false, {});
    }
Y
Yan Chunwei 已提交
130
    scope_.reset(new paddle::framework::Scope());
131
    status_is_cloned_ = false;
Y
Yan Chunwei 已提交
132
  }
133 134 135 136 137
  sub_scope_ = &scope_->NewScope();
  return true;
}
bool AnalysisPredictor::PrepareProgram(
    const std::shared_ptr<framework::ProgramDesc> &program) {
138 139
  if (!program) {
    if (!LoadProgramDesc()) return false;
140 141 142 143 144 145 146
    // If not cloned, the parameters should be loaded.
    // If config_.ir_optim() is True, parameters is loaded in
    // OptimizeInferenceProgram(), but other persistable variables
    // (like RAW type var) are not created in scope.
    // If config_.ir_optim() is False, parameters is loaded in LoadParameters(),
    // still need to create other persistable variables.
    // So in both case, create persistable variables at first.
147 148
    if (!CheckOperatorCompatible()) {
      LOG(WARNING) << "WARNING: Results may be DIFF! "
149 150
                      "Please use the corresponding version of the model and "
                      "prediction library, and do not use the develop branch.";
151
    }
152 153
    executor_->CreateVariables(*inference_program_, 0, true, sub_scope_);

154 155 156 157
    // if enable_ir_optim_ is false,
    // the analysis pass(op fuse, graph analysis, trt subgraph, mkldnn etc) will
    // not be executed.
    OptimizeInferenceProgram();
Y
Yan Chunwei 已提交
158
  } else {
159 160
    // If the program is passed from external, no need to optimize it, this
    // logic is used in the clone scenario.
161 162
    inference_program_ = program;
  }
M
Michal Gallus 已提交
163

164 165 166 167 168
  executor_->CreateVariables(*inference_program_, 0, false, sub_scope_);

  return true;
}
bool AnalysisPredictor::CreateExecutor() {
169
  if (config_.use_gpu_) {
170
    status_use_gpu_ = true;
171
    place_ = paddle::platform::CUDAPlace(config_.device_id_);
172 173 174 175 176 177 178 179
  } else {
    place_ = paddle::platform::CPUPlace();
  }
  executor_.reset(new paddle::framework::NaiveExecutor(place_));
  return true;
}
bool AnalysisPredictor::PrepareExecutor() {
  executor_->Prepare(sub_scope_, *inference_program_, 0,
180
                     config_.use_feed_fetch_ops_);
181

182
  PADDLE_ENFORCE_NOT_NULL(sub_scope_);
Y
Yan Chunwei 已提交
183

184 185 186
  return true;
}

187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
void AnalysisPredictor::MkldnnPreSet(const std::vector<PaddleTensor> &inputs) {
#ifdef PADDLE_WITH_MKLDNN
  VLOG(2) << "AnalysisPredictor::Run get_cur_mkldnn_session_id="
          << platform::get_cur_mkldnn_session_id();
  // In cache clearing mode.
  if (config_.mkldnn_cache_capacity_ > 0) {
    VLOG(2) << "In mkldnn cache clear mode.";
    platform::set_cur_mkldnn_session_id(
        platform::kMKLDNNSessionID_CacheClearing);
    platform::set_cur_input_shape_cache_capacity(
        config_.mkldnn_cache_capacity_);
    // Set current_input_shape for caching dynamic shape.
    std::stringstream ss;
    for (size_t i = 0; i < inputs.size(); ++i) {
      for (size_t j = 0; j < inputs[i].shape.size(); ++j) {
        ss << inputs[i].shape[j] << "-";
      }
    }
    VLOG(2) << "Set input shape=" << ss.str();
    platform::set_cur_input_shape_str(ss.str());
  }
#endif
}

void AnalysisPredictor::MkldnnPostReset() {
#ifdef PADDLE_WITH_MKLDNN
  // In cache clearing mode.
  if (config_.mkldnn_cache_capacity_ > 0) {
    paddle::platform::set_cur_mkldnn_session_id(
        platform::kMKLDNNSessionID_Default);
    platform::set_cur_input_shape_cache_capacity(0);
    platform::set_cur_input_shape_str("");
  }
#endif
}

223 224 225
bool AnalysisPredictor::Run(const std::vector<PaddleTensor> &inputs,
                            std::vector<PaddleTensor> *output_data,
                            int batch_size) {
226
  paddle::platform::SetNumThreads(config_.cpu_math_library_num_threads());
227 228 229
#ifdef PADDLE_WITH_MKLDNN
  if (config_.use_mkldnn_) MkldnnPreSet(inputs);
#endif
M
minqiyang 已提交
230
  VLOG(3) << "Predictor::predict";
231 232 233 234
  inference::Timer timer;
  timer.tic();
  // set feed variable
  framework::Scope *scope = sub_scope_ ? sub_scope_ : scope_.get();
235
  PADDLE_ENFORCE_NOT_NULL(scope, "The scope should not be nullptr.");
236 237
  if (!SetFeed(inputs, scope)) {
    LOG(ERROR) << "fail to set feed";
Y
Yan Chunwei 已提交
238
    return false;
239
  }
M
Michal Gallus 已提交
240

241 242 243
  // Run the inference program
  // if share variables, we need not create variables
  executor_->Run();
244

245 246 247 248
  // get fetch variable
  if (!GetFetch(output_data, scope)) {
    LOG(ERROR) << "fail to get fetches";
    return false;
T
tensor-tang 已提交
249
  }
Y
Yan Chunwei 已提交
250

M
minqiyang 已提交
251
  VLOG(3) << "predict cost: " << timer.toc() << "ms";
Y
Yan Chunwei 已提交
252

Y
Yan Chunwei 已提交
253 254 255 256 257
  // All the containers in the scope will be hold in inference, but the
  // operators assume that the container will be reset after each batch.
  // Here is a bugfix, collect all the container variables, and reset then to a
  // bool; the next time, the operator will call MutableData and construct a new
  // container again, so that the container will be empty for each batch.
258 259 260
  if (sub_scope_) {
    tensor_array_batch_cleaner_.CollectNoTensorVars(sub_scope_);
  }
Y
Yan Chunwei 已提交
261
  tensor_array_batch_cleaner_.ResetNoTensorVars();
262 263 264 265

  // recover the cpu_math_library_num_threads to 1, in order to avoid thread
  // conflict when integrating it into deployment service.
  paddle::platform::SetNumThreads(1);
266 267 268
#ifdef PADDLE_WITH_MKLDNN
  if (config_.use_mkldnn_) MkldnnPostReset();
#endif
269 270
  return true;
}
271

272 273
bool AnalysisPredictor::SetFeed(const std::vector<PaddleTensor> &inputs,
                                framework::Scope *scope) {
M
minqiyang 已提交
274
  VLOG(3) << "Predictor::set_feed";
275 276 277 278 279 280 281 282 283 284 285 286 287 288
  if (inputs.size() != feeds_.size()) {
    LOG(ERROR) << "wrong feed input size, need " << feeds_.size() << " but get "
               << inputs.size();
    return false;
  }

  // Cache the inputs memory for better concurrency performance.
  feed_tensors_.resize(inputs.size());

  for (size_t i = 0; i < inputs.size(); ++i) {
    auto &input = feed_tensors_[i];
    framework::DDim ddim = framework::make_ddim(inputs[i].shape);
    void *input_ptr;
    if (inputs[i].dtype == PaddleDType::INT64) {
289
      input_ptr = input.mutable_data<int64_t>(ddim, place_);
290
    } else if (inputs[i].dtype == PaddleDType::FLOAT32) {
291
      input_ptr = input.mutable_data<float>(ddim, place_);
292 293
    } else if (inputs[i].dtype == PaddleDType::INT32) {
      input_ptr = input.mutable_data<int32_t>(ddim, place_);
294 295 296 297 298
    } else {
      LOG(ERROR) << "unsupported feed type " << inputs[i].dtype;
      return false;
    }

L
liuwei1031 已提交
299 300 301
    PADDLE_ENFORCE_NOT_NULL(input_ptr);
    PADDLE_ENFORCE_NOT_NULL(inputs[i].data.data());

302 303 304 305 306 307
    if (platform::is_cpu_place(place_)) {
      // TODO(panyx0718): Init LoDTensor from existing memcpy to save a copy.
      std::memcpy(static_cast<void *>(input_ptr), inputs[i].data.data(),
                  inputs[i].data.length());
    } else {
#ifdef PADDLE_WITH_CUDA
Q
qingqing01 已提交
308 309 310 311
      platform::DeviceContextPool &pool =
          platform::DeviceContextPool::Instance();
      auto *dev_ctx =
          static_cast<const platform::CUDADeviceContext *>(pool.Get(place_));
312 313 314
      auto dst_gpu_place = boost::get<platform::CUDAPlace>(place_);
      memory::Copy(dst_gpu_place, static_cast<void *>(input_ptr),
                   platform::CPUPlace(), inputs[i].data.data(),
Q
qingqing01 已提交
315
                   inputs[i].data.length(), dev_ctx->stream());
316 317 318 319
#else
      PADDLE_THROW("Not compile with CUDA, should not reach here.");
#endif
    }
320 321 322 323 324 325 326
    // TODO(Superjomn) Low performance, need optimization for heavy LoD copy.
    framework::LoD lod;
    for (auto &level : inputs[i].lod) {
      lod.emplace_back(level);
    }
    input.set_lod(lod);
    int idx = -1;
327
    if (config_.specify_input_name_) {
T
tensor-tang 已提交
328 329
      auto name = inputs[i].name;
      if (feed_names_.find(name) == feed_names_.end()) {
T
tensor-tang 已提交
330 331
        LOG(ERROR) << "feed names from program do not have name: [" << name
                   << "] from specified input";
T
tensor-tang 已提交
332 333
      }
      idx = feed_names_[name];
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
    } else {
      idx = boost::get<int>(feeds_[i]->GetAttr("col"));
    }
    framework::SetFeedVariable(scope, input, "feed", idx);
  }
  return true;
}

template <typename T>
void AnalysisPredictor::GetFetchOne(const framework::LoDTensor &fetch,
                                    PaddleTensor *output) {
  // set shape.
  auto shape = framework::vectorize(fetch.dims());
  output->shape.assign(shape.begin(), shape.end());
  // set data.
  const T *data = fetch.data<T>();
  int num_elems = inference::VecReduceToInt(shape);
  output->data.Resize(num_elems * sizeof(T));
  // The fetched tensor output by fetch op, should always in CPU memory, so just
  // copy.
  memcpy(output->data.data(), data, num_elems * sizeof(T));
  // set lod
  output->lod.clear();
  for (auto &level : fetch.lod()) {
    output->lod.emplace_back(level.begin(), level.end());
  }
}

bool AnalysisPredictor::GetFetch(std::vector<PaddleTensor> *outputs,
                                 framework::Scope *scope) {
M
minqiyang 已提交
364
  VLOG(3) << "Predictor::get_fetch";
Y
Yan Chunwei 已提交
365 366 367
  outputs->resize(fetches_.size());
  for (size_t i = 0; i < fetches_.size(); ++i) {
    int idx = boost::get<int>(fetches_[i]->GetAttr("col"));
368 369 370 371 372
    PADDLE_ENFORCE((size_t)idx == i);
    framework::LoDTensor &fetch =
        framework::GetFetchVariable(*scope, "fetch", idx);
    auto type = fetch.type();
    auto output = &(outputs->at(i));
Y
Yan Chunwei 已提交
373
    output->name = fetches_[idx]->Input("X")[0];
Y
Yu Yang 已提交
374
    if (type == framework::proto::VarType::FP32) {
375 376
      GetFetchOne<float>(fetch, output);
      output->dtype = PaddleDType::FLOAT32;
Y
Yu Yang 已提交
377
    } else if (type == framework::proto::VarType::INT64) {
378 379
      GetFetchOne<int64_t>(fetch, output);
      output->dtype = PaddleDType::INT64;
380 381 382
    } else if (type == framework::proto::VarType::INT32) {
      GetFetchOne<int32_t>(fetch, output);
      output->dtype = PaddleDType::INT32;
383
    } else {
384
      LOG(ERROR) << "unknown type, only support float32, int64 and int32 now.";
385 386
    }
  }
Y
Yan Chunwei 已提交
387 388
  return true;
}
389

390
void AnalysisPredictor::PrepareArgument() {
391 392
  argument_.SetUseGPU(config_.use_gpu());
  argument_.SetGPUDeviceId(config_.gpu_device_id());
393
  argument_.SetEnableAnalysisOptim(config_.enable_ir_optim_);
Y
Yan Chunwei 已提交
394
  argument_.SetEnableMemoryOptim(config_.enable_memory_optim());
T
Tao Luo 已提交
395
  argument_.SetModelFromMemory(config_.model_from_memory_);
Y
Yan Chunwei 已提交
396
  // Analyze inference_program
397 398
  argument_.SetUseAnakin(config_.anakin_engine_enabled());
  argument_.SetPredictorID(predictor_id_);
399
  argument_.SetOptimCacheDir(config_.opt_cache_dir_);
400 401
  if (!config_.model_dir().empty()) {
    argument_.SetModelDir(config_.model_dir());
T
Tao Luo 已提交
402 403
  } else {
    PADDLE_ENFORCE(
404
        !config_.params_file().empty(),
T
Tao Luo 已提交
405
        "Either model_dir or (param_file, prog_file) should be set.");
406
    PADDLE_ENFORCE(!config_.prog_file().empty());
N
nhzlx 已提交
407
    std::string dir = inference::analysis::GetDirRoot(config_.prog_file());
N
nhzlx 已提交
408

409 410
    argument_.SetModelProgramPath(config_.prog_file());
    argument_.SetModelParamsPath(config_.params_file());
Y
Yan Chunwei 已提交
411
  }
412

413
  if (config_.use_gpu() && config_.tensorrt_engine_enabled()) {
Y
Yan Chunwei 已提交
414
    LOG(INFO) << "TensorRT subgraph engine is enabled";
415 416 417
    argument_.SetUseTensorRT(true);
    argument_.SetTensorRtWorkspaceSize(config_.tensorrt_workspace_size_);
    argument_.SetTensorRtMaxBatchSize(config_.tensorrt_max_batchsize_);
418
    argument_.SetTensorRtMinSubgraphSize(config_.tensorrt_min_subgraph_size_);
N
nhzlx 已提交
419
    argument_.SetTensorRtPrecisionMode(config_.tensorrt_precision_mode_);
N
nhzlx 已提交
420
    argument_.SetTensorRtUseStaticEngine(config_.trt_use_static_engine_);
421
    argument_.SetTensorRtUseCalibMode(config_.trt_use_calib_mode_);
W
Wojciech Uss 已提交
422
  }
423

424
  if (config_.anakin_engine_enabled()) {
425
    argument_.SetAnakinMaxBatchSize(config_.anakin_max_batchsize_);
426
    argument_.SetAnakinMaxInputShape(config_.anakin_max_input_shape_);
427
    argument_.SetAnakinMinSubgraphSize(config_.anakin_min_subgraph_size_);
428 429 430 431
    argument_.SetAnakinPrecisionMode(config_.anakin_precision_mode_);
    argument_.SetAnakinAutoConfigLayout(config_.anakin_auto_config_layout_);
    argument_.SetAnakinPassesFilter(config_.anakin_passes_filter_);
    argument_.SetAnakinOpsFilter(config_.anakin_ops_filter_);
432 433 434
    LOG(INFO) << "Anakin subgraph engine is enabled";
  }

435
  if (config_.use_mkldnn_) {
Y
Yan Chunwei 已提交
436
    LOG(INFO) << "MKLDNN is enabled";
437 438 439
    argument_.SetMKLDNNEnabledOpTypes(config_.mkldnn_enabled_op_types_);
  }

440 441 442 443 444 445 446 447 448 449
#ifdef PADDLE_WITH_MKLDNN
  if (config_.mkldnn_quantizer_enabled()) {
    LOG(INFO) << "Quantization is enabled";
    argument_.SetQuantizeEnabledOpTypes(
        config_.mkldnn_quantizer_config()->enabled_op_types());
    argument_.SetQuantizeExcludedOpIds(
        config_.mkldnn_quantizer_config()->excluded_op_ids());
  }
#endif

450
  auto passes = config_.pass_builder()->AllPasses();
Y
Yan Chunwei 已提交
451 452 453 454
  if (!config_.ir_optim()) {
    passes.clear();
    LOG(INFO) << "ir_optim is turned off, no IR pass will be executed";
  }
455
  argument_.SetDisableLogs(config_.glog_info_disabled());
456
  argument_.SetIrAnalysisPasses(passes);
Y
Yan Chunwei 已提交
457
  argument_.SetAnalysisPasses(config_.pass_builder()->AnalysisPasses());
458
  argument_.SetScopeNotOwned(scope_.get());
459 460 461 462 463
}

// NOTE All the members in AnalysisConfig should be copied to Argument.
void AnalysisPredictor::OptimizeInferenceProgram() {
  PrepareArgument();
464 465 466 467 468
  Analyzer().Run(&argument_);

  PADDLE_ENFORCE(argument_.scope_valid());
  VLOG(5) << "to prepare executor";
  ARGUMENT_CHECK_FIELD((&argument_), ir_analyzed_program);
Y
Yan Chunwei 已提交
469
  inference_program_.reset(
470
      new framework::ProgramDesc(argument_.ir_analyzed_program()));
471 472 473 474
  // The config and argument take a lot of storage,
  // when the predictor settings are complete, we release these stores.
  argument_.PartiallyRelease();
  config_.PartiallyRelease();
475
  LOG(INFO) << "======= optimize end =======";
Y
Yan Chunwei 已提交
476
}
477 478

template <>
479 480
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor<
    AnalysisConfig, PaddleEngineKind::kAnalysis>(const AnalysisConfig &config) {
P
Pei Yang 已提交
481 482 483 484
  if (config.glog_info_disabled()) {
    FLAGS_logtostderr = 1;
    FLAGS_minloglevel = 2;  // GLOG_ERROR
  }
M
minqiyang 已提交
485
  VLOG(3) << "create AnalysisConfig";
486 487
  PADDLE_ENFORCE(config.is_valid(),
                 "Note: Each config can only be used for one predictor.");
488
  if (config.use_gpu()) {
S
Sylwester Fraczek 已提交
489
    // 1. GPU memory
490
    PADDLE_ENFORCE_GE(config.memory_pool_init_size_mb(), 0.f);
491 492
    PADDLE_ENFORCE_GE(config.gpu_device_id(), 0, "Invalid device id %d",
                      config.gpu_device_id());
493
    std::vector<std::string> flags;
494 495 496 497 498 499 500 501 502 503 504

    float fraction_of_gpu_memory = config.fraction_of_gpu_memory_for_pool();
    if (fraction_of_gpu_memory > 0.95f) {
      LOG(ERROR)
          << "Allocate too much memory for the GPU memory pool, assigned "
          << config.memory_pool_init_size_mb() << " MB";
      LOG(ERROR)
          << "Try to shink the value by setting AnalysisConfig::EnableGpu(...)";
    }

    if (fraction_of_gpu_memory >= 0.0f || fraction_of_gpu_memory <= 0.95f) {
505
      flags.push_back("dummy");
506
      std::string flag = "--fraction_of_gpu_memory_to_use=" +
507
                         std::to_string(fraction_of_gpu_memory);
508
      flags.push_back(flag);
L
Lv Mengsi 已提交
509
      flags.push_back("--cudnn_deterministic=True");
M
minqiyang 已提交
510
      VLOG(3) << "set flag: " << flag;
511 512 513 514 515
      framework::InitGflags(flags);
    }
  }

  std::unique_ptr<PaddlePredictor> predictor(new AnalysisPredictor(config));
516 517
  // Each config can only be used for one predictor.
  config.SetInValid();
518 519 520 521 522 523 524
  auto predictor_p = dynamic_cast<AnalysisPredictor *>(predictor.get());

  if (!predictor_p->Init(nullptr)) {
    return nullptr;
  }

  if (config.mkldnn_quantizer_enabled() && !predictor_p->MkldnnQuantize()) {
525 526
    return nullptr;
  }
527

G
Gabor Buella 已提交
528
  return predictor;
529 530
}

531 532 533 534 535 536 537 538 539 540 541 542
bool AnalysisPredictor::MkldnnQuantize() {
#if PADDLE_WITH_MKLDNN
  if (!mkldnn_quantizer_)
    mkldnn_quantizer_ = new AnalysisPredictor::MkldnnQuantizer(
        *this, config_.mkldnn_quantizer_config());
  return mkldnn_quantizer_->Quantize();
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MkldnnQuantizer";
  return false;
#endif
}

543
void AnalysisPredictor::PrepareFeedFetch() {
544 545
  PADDLE_ENFORCE_NOT_NULL(sub_scope_);
  CreateFeedFetchVar(sub_scope_);
546 547 548 549 550 551 552 553
  for (auto *op : inference_program_->Block(0).AllOps()) {
    if (op->Type() == "feed") {
      int idx = boost::get<int>(op->GetAttr("col"));
      if (feeds_.size() <= static_cast<size_t>(idx)) {
        feeds_.resize(idx + 1);
      }
      feeds_[idx] = op;
      feed_names_[op->Output("Out")[0]] = idx;
N
nhzlx 已提交
554
      idx2feeds_[idx] = op->Output("Out")[0];
555 556
    } else if (op->Type() == "fetch") {
      int idx = boost::get<int>(op->GetAttr("col"));
Y
Yan Chunwei 已提交
557 558
      if (fetches_.size() <= static_cast<size_t>(idx)) {
        fetches_.resize(idx + 1);
559
      }
Y
Yan Chunwei 已提交
560
      fetches_[idx] = op;
N
nhzlx 已提交
561
      idx2fetches_[idx] = op->Input("X")[0];
562 563 564 565
    }
  }
}

566 567 568 569 570 571 572 573
void AnalysisPredictor::CreateFeedFetchVar(framework::Scope *scope) {
  PADDLE_ENFORCE_NOT_NULL(scope);
  auto *var = scope->Var("feed");
  var->GetMutable<framework::FeedFetchList>();
  var = scope->Var("fetch");
  var->GetMutable<framework::FeedFetchList>();
}

N
nhzlx 已提交
574 575 576 577 578 579 580 581
std::vector<std::string> AnalysisPredictor::GetInputNames() {
  std::vector<std::string> input_names;
  for (auto &item : idx2feeds_) {
    input_names.push_back(item.second);
  }
  return input_names;
}

582 583 584 585 586 587 588 589 590 591 592 593
std::map<std::string, std::vector<int64_t>>
AnalysisPredictor::GetInputTensorShape() {
  std::map<std::string, std::vector<int64_t>> input_shapes;
  std::vector<std::string> names = GetInputNames();
  for (std::string name : names) {
    auto *var = inference_program_->Block(0).FindVar(name);
    PADDLE_ENFORCE_NOT_NULL(var, "input %s does not exist.", name);
    input_shapes[name] = var->GetShape();
  }
  return input_shapes;
}

N
nhzlx 已提交
594 595 596 597 598 599 600 601
std::vector<std::string> AnalysisPredictor::GetOutputNames() {
  std::vector<std::string> output_names;
  for (auto &item : idx2fetches_) {
    output_names.push_back(item.second);
  }
  return output_names;
}

602 603 604 605 606 607 608
std::unique_ptr<ZeroCopyTensor> AnalysisPredictor::GetInputTensor(
    const std::string &name) {
  PADDLE_ENFORCE(executor_->scope()->FindVar(name), "no name called %s", name);
  std::unique_ptr<ZeroCopyTensor> res(
      new ZeroCopyTensor(static_cast<void *>(executor_->scope())));
  res->input_or_output_ = true;
  res->SetName(name);
N
nhzlx 已提交
609 610 611 612 613 614 615
  if (platform::is_cpu_place(place_)) {
    res->SetPlace(PaddlePlace::kCPU);
  } else {
    auto gpu_place = boost::get<platform::CUDAPlace>(place_);
    res->SetPlace(PaddlePlace::kGPU, gpu_place.GetDeviceId());
  }

616 617 618 619 620 621 622 623 624 625
  return res;
}

std::unique_ptr<ZeroCopyTensor> AnalysisPredictor::GetOutputTensor(
    const std::string &name) {
  PADDLE_ENFORCE(executor_->scope()->FindVar(name), "no name called %s", name);
  std::unique_ptr<ZeroCopyTensor> res(
      new ZeroCopyTensor(static_cast<void *>(executor_->scope())));
  res->input_or_output_ = false;
  res->SetName(name);
N
nhzlx 已提交
626 627 628 629 630 631
  if (platform::is_cpu_place(place_)) {
    res->SetPlace(PaddlePlace::kCPU);
  } else {
    auto gpu_place = boost::get<platform::CUDAPlace>(place_);
    res->SetPlace(PaddlePlace::kGPU, gpu_place.GetDeviceId());
  }
632 633 634 635
  return res;
}

bool AnalysisPredictor::ZeroCopyRun() {
636
  paddle::platform::SetNumThreads(config_.cpu_math_library_num_threads());
637
  executor_->Run();
Y
Yan Chunwei 已提交
638
  // Fix TensorArray reuse not cleaned bug.
Y
Yan Chunwei 已提交
639
  tensor_array_batch_cleaner_.CollectTensorArrays(sub_scope_);
Y
Yan Chunwei 已提交
640
  tensor_array_batch_cleaner_.ResetTensorArray();
641 642 643 644

  // recover the cpu_math_library_num_threads to 1, in order to avoid thread
  // conflict when integrating it into deployment service.
  paddle::platform::SetNumThreads(1);
645 646 647 648 649
  return true;
}

bool AnalysisPredictor::LoadProgramDesc() {
  // Initialize the inference program
650
  std::string filename;
651 652 653
  if (!config_.model_dir().empty()) {
    filename = config_.model_dir() + "/__model__";
  } else if (!config_.prog_file().empty() && !config_.params_file().empty()) {
654 655 656
    // All parameters are saved in a single file.
    // The file names should be consistent with that used
    // in Python API `fluid.io.save_inference_model`.
657
    filename = config_.prog_file();
658
  } else {
659
    if (config_.model_dir().empty() && config_.prog_file().empty()) {
660 661 662 663
      LOG(ERROR)
          << "Either model_dir or (prog_file, param_file) should be set.";
      return false;
    }
664
    LOG(ERROR) << string::Sprintf(
665 666
        "not valid model path '%s' or program path '%s'.", config_.model_dir(),
        config_.params_file());
667 668
    return false;
  }
669 670 671

  // Create ProgramDesc
  framework::proto::ProgramDesc proto;
T
Tao Luo 已提交
672
  if (!config_.model_from_memory()) {
T
Tao Luo 已提交
673 674 675
    std::string pb_content;
    // Read binary
    std::ifstream fin(filename, std::ios::in | std::ios::binary);
T
Tao Luo 已提交
676 677
    PADDLE_ENFORCE(static_cast<bool>(fin.is_open()), "Cannot open file %s",
                   filename);
T
Tao Luo 已提交
678 679 680 681 682 683 684 685
    fin.seekg(0, std::ios::end);
    pb_content.resize(fin.tellg());
    fin.seekg(0, std::ios::beg);
    fin.read(&(pb_content.at(0)), pb_content.size());
    fin.close();

    proto.ParseFromString(pb_content);
  } else {
686
    proto.ParseFromString(config_.prog_file());
T
Tao Luo 已提交
687
  }
688 689 690 691 692 693 694
  inference_program_.reset(new framework::ProgramDesc(proto));
  return true;
}

bool AnalysisPredictor::LoadParameters() {
  PADDLE_ENFORCE_NOT_NULL(inference_program_.get(),
                          "The inference program should be loaded first.");
T
Tao Luo 已提交
695

696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715
  const auto &global_block = inference_program_->MutableBlock(0);

  // create a temporary program to load parameters.

  std::unique_ptr<framework::ProgramDesc> load_program(
      new framework::ProgramDesc());
  framework::BlockDesc *load_block = load_program->MutableBlock(0);
  std::vector<std::string> params;

  for (auto *var : global_block->AllVars()) {
    if (IsPersistable(var)) {
      VLOG(3) << "persistable variable's name: " << var->Name();

      framework::VarDesc *new_var = load_block->Var(var->Name());
      new_var->SetShape(var->GetShape());
      new_var->SetDataType(var->GetDataType());
      new_var->SetType(var->GetType());
      new_var->SetLoDLevel(var->GetLoDLevel());
      new_var->SetPersistable(true);

716
      if (!config_.params_file().empty()) {
717 718 719 720 721 722
        params.push_back(new_var->Name());
      } else {
        // append_op
        framework::OpDesc *op = load_block->AppendOp();
        op->SetType("load");
        op->SetOutput("Out", {new_var->Name()});
723
        op->SetAttr("file_path", {config_.model_dir() + "/" + new_var->Name()});
724 725 726 727 728
        op->CheckAttrs();
      }
    }
  }

729
  if (!config_.params_file().empty()) {
730 731 732 733 734 735
    // sort paramlist to have consistent ordering
    std::sort(params.begin(), params.end());
    // append just the load_combine op
    framework::OpDesc *op = load_block->AppendOp();
    op->SetType("load_combine");
    op->SetOutput("Out", params);
736
    op->SetAttr("file_path", {config_.params_file()});
737 738 739 740
    op->CheckAttrs();
  }

  // Use NaiveExecutor to Load parameters.
S
superjomn 已提交
741
  framework::NaiveExecutor e(place_);
742 743 744 745
  e.Prepare(scope_.get(), *load_program, 0, false);
  e.Run();
  VLOG(3) << "get " << scope_->LocalVarNames().size() << " vars after load";

746 747
  return true;
}
748

N
nhzlx 已提交
749
#if PADDLE_WITH_TENSORRT
N
nhzlx 已提交
750 751 752 753 754 755 756 757
bool AnalysisPredictor::SaveTrtCalibToDisk() {
  PADDLE_ENFORCE(config_.tensorrt_engine_enabled(),
                 "This func can be invoked only in trt mode");
  auto &block = inference_program_->Block(0);
  for (auto &op_desc : block.AllOps()) {
    if (op_desc->Type() == "tensorrt_engine") {
      std::string engine_name =
          boost::get<std::string>(op_desc->GetAttr("engine_key"));
N
nhzlx 已提交
758
      if (!Singleton<TRTCalibratorEngineManager>::Global().Has(engine_name)) {
N
nhzlx 已提交
759 760 761 762
        LOG(ERROR) << "You should run the predictor(with trt) on the real data "
                      "to generate calibration info";
        return false;
      }
N
nhzlx 已提交
763 764
      TRTCalibratorEngine *calib_engine =
          Singleton<TRTCalibratorEngineManager>::Global().Get(engine_name);
N
nhzlx 已提交
765
      LOG(INFO) << "Wait for calib threads done.";
N
nhzlx 已提交
766
      calib_engine->calib_->waitAndSetDone();
N
nhzlx 已提交
767 768
      LOG(INFO) << "Generating TRT Calibration table data, this may cost a lot "
                   "of time...";
N
nhzlx 已提交
769 770 771
      calib_engine->thr_->join();
      std::string calibration_table_data =
          calib_engine->calib_->getCalibrationTableAsString();
N
nhzlx 已提交
772

N
nhzlx 已提交
773
      if (calibration_table_data.empty()) {
N
nhzlx 已提交
774 775 776
        LOG(ERROR) << "the calibration table is empty.";
        return false;
      }
N
nhzlx 已提交
777

N
nhzlx 已提交
778 779 780 781 782
      std::string model_opt_cache_dir =
          argument_.Has("model_dir")
              ? argument_.model_dir()
              : inference::analysis::GetDirRoot(argument_.model_program_path());

N
nhzlx 已提交
783
      std::string calibration_table_data_path =
N
nhzlx 已提交
784 785 786 787
          inference::analysis::GetTrtCalibPath(
              inference::analysis::GetOrCreateModelOptCacheDir(
                  model_opt_cache_dir),
              engine_name);
N
nhzlx 已提交
788 789 790 791 792

      std::ofstream ofile(calibration_table_data_path, std::ios::out);
      LOG(INFO) << "Write Paddle-TRT INT8 calibration table data to file "
                << calibration_table_data_path;
      ofile << calibration_table_data;
N
nhzlx 已提交
793 794 795 796
      ofile.close();
    }
  }
  // Free all calibrator resources.
N
nhzlx 已提交
797
  Singleton<TRTCalibratorEngineManager>::Global().DeleteALL();
N
nhzlx 已提交
798 799
  return true;
}
N
nhzlx 已提交
800
#endif
N
nhzlx 已提交
801

802
AnalysisPredictor::~AnalysisPredictor() {
N
nhzlx 已提交
803
#if PADDLE_WITH_TENSORRT
N
nhzlx 已提交
804
  if (config_.tensorrt_engine_enabled() &&
N
nhzlx 已提交
805 806
      config_.tensorrt_precision_mode_ == AnalysisConfig::Precision::kInt8 &&
      Singleton<TRTCalibratorEngineManager>::Global().Has()) {
N
nhzlx 已提交
807 808
    SaveTrtCalibToDisk();
  }
N
nhzlx 已提交
809
#endif
810
  if (config_.with_profile_) {
811 812 813 814 815 816
    platform::DisableProfiler(platform::EventSortingKey::kTotal,
                              "./profile.log");
  }
  if (sub_scope_) {
    scope_->DeleteScope(sub_scope_);
  }
Y
Yan Chunwei 已提交
817

818 819 820 821 822 823
#if PADDLE_WITH_MKLDNN
  if (mkldnn_quantizer_) {
    delete mkldnn_quantizer_;
    mkldnn_quantizer_ = nullptr;
  }
#endif
824 825
}

826
std::unique_ptr<PaddlePredictor> AnalysisPredictor::Clone() {
Y
Yan Chunwei 已提交
827
  std::lock_guard<std::mutex> lk(clone_mutex_);
828 829 830 831 832
  auto *x = new AnalysisPredictor(config_);
  x->Init(scope_, inference_program_);
  return std::unique_ptr<PaddlePredictor>(x);
}

833
std::string AnalysisPredictor::GetSerializedProgram() const {
Y
Yan Chunwei 已提交
834 835 836
  return inference_program_->Proto()->SerializeAsString();
}

837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859
bool AnalysisPredictor::CheckOperatorCompatible() {
  if (!inference_program_) {
    LOG(FATAL) << "Inference program version check failed because the program "
                  "does not exist.";
    return false;
  }
  bool res = true;
  op_compatible_map_.ReadFromProto(*inference_program_->OpCompatibleMap());
  const auto &version = framework::DumpVersion(framework::kCurProgramVersion);
  LOG(INFO) << "MODEL VERSION: "
            << framework::DumpVersion(inference_program_->Version());
  LOG(INFO) << "PREDICTOR VERSION: " << version;
  std::set<std::string> op_types;
  for (size_t i = 0; i < inference_program_->Size(); ++i) {
    const auto &block = inference_program_->Block(i);
    for (const auto *op : block.AllOps()) {
      op_types.insert(op->Type());
    }
  }
  for (const auto type : op_types) {
    auto compatible_type =
        op_compatible_map_.IsRequireMiniVersion(type, version);
    if (compatible_type != framework::OpCompatibleType::compatible) {
860 861 862 863
      if (!framework::kCurProgramVersion) {
        LOG(WARNING) << " - Version incompatible ("
                     << static_cast<int>(compatible_type) << ") " << type;
      }
864 865 866 867 868 869
      res = false;
    }
  }
  return res;
}

870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908
// Add SaveOptimModel
void AnalysisPredictor::SaveOptimModel(const std::string &dir) {
  // save model
  std::string model_name = dir + "/model";
  std::ofstream outfile;
  outfile.open(model_name, std::ios::out | std::ios::binary);
  std::string inference_prog_desc = GetSerializedProgram();
  outfile << inference_prog_desc;
  // save params
  framework::ProgramDesc save_program;
  auto *save_block = save_program.MutableBlock(0);

  const framework::ProgramDesc &main_program = program();
  const framework::BlockDesc &global_block = main_program.Block(0);
  std::vector<std::string> save_var_list;
  for (framework::VarDesc *var : global_block.AllVars()) {
    if (IsPersistable(var)) {
      framework::VarDesc *new_var = save_block->Var(var->Name());
      new_var->SetShape(var->GetShape());
      new_var->SetDataType(var->GetDataType());
      new_var->SetType(var->GetType());
      new_var->SetLoDLevel(var->GetLoDLevel());
      new_var->SetPersistable(true);

      save_var_list.push_back(new_var->Name());
    }
  }
  std::sort(save_var_list.begin(), save_var_list.end());
  auto *op = save_block->AppendOp();
  op->SetType("save_combine");
  op->SetInput("X", save_var_list);
  op->SetAttr("file_path", dir + "/params");
  op->CheckAttrs();

  platform::CPUPlace place;
  framework::Executor exe(place);
  exe.Run(save_program, scope(), 0, true, true);
}

Y
Yan Chunwei 已提交
909
template <>
910 911 912 913
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor<AnalysisConfig>(
    const AnalysisConfig &config) {
  return CreatePaddlePredictor<AnalysisConfig, PaddleEngineKind::kAnalysis>(
      config);
Y
Yan Chunwei 已提交
914 915
}

916
}  // namespace paddle
917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938

#if PADDLE_WITH_TENSORRT
USE_TRT_CONVERTER(elementwise_add_weight);
USE_TRT_CONVERTER(elementwise_add_tensor);
USE_TRT_CONVERTER(elementwise_sub_tensor);
USE_TRT_CONVERTER(elementwise_div_tensor);
USE_TRT_CONVERTER(elementwise_mul_tensor);
USE_TRT_CONVERTER(elementwise_max_tensor);
USE_TRT_CONVERTER(elementwise_min_tensor);
USE_TRT_CONVERTER(elementwise_pow_tensor);
USE_TRT_CONVERTER(mul);
USE_TRT_CONVERTER(conv2d);
USE_TRT_CONVERTER(relu);
USE_TRT_CONVERTER(sigmoid);
USE_TRT_CONVERTER(tanh);
USE_TRT_CONVERTER(fc);
USE_TRT_CONVERTER(pool2d);
USE_TRT_CONVERTER(softmax);
USE_TRT_CONVERTER(batch_norm);
USE_TRT_CONVERTER(concat);
USE_TRT_CONVERTER(dropout);
USE_TRT_CONVERTER(pad);
939
USE_TRT_CONVERTER(split);
940 941
USE_TRT_CONVERTER(prelu);
USE_TRT_CONVERTER(conv2d_transpose);
H
hjchen2 已提交
942
USE_TRT_CONVERTER(leaky_relu);
943 944
USE_TRT_CONVERTER(shuffle_channel);
USE_TRT_CONVERTER(swish);
945
#endif
946

N
nhzlx 已提交
947
#if PADDLE_WITH_ANAKIN
948
USE_ANAKIN_CONVERTER(mul);
949 950
USE_ANAKIN_CONVERTER(fc);
USE_ANAKIN_CONVERTER(conv2d);
951
USE_ANAKIN_CONVERTER(conv2d_fusion);
952 953 954 955 956 957 958
USE_ANAKIN_CONVERTER(concat);
USE_ANAKIN_CONVERTER(split);
USE_ANAKIN_CONVERTER(relu);
USE_ANAKIN_CONVERTER(sigmoid);
USE_ANAKIN_CONVERTER(tanh);
USE_ANAKIN_CONVERTER(pool2d);
USE_ANAKIN_CONVERTER(elementwise_add);
959
USE_ANAKIN_CONVERTER(elementwise_mul);
960 961 962 963 964 965 966
USE_ANAKIN_CONVERTER(batch_norm);
USE_ANAKIN_CONVERTER(flatten);
USE_ANAKIN_CONVERTER(reshape);
USE_ANAKIN_CONVERTER(transpose);
USE_ANAKIN_CONVERTER(softmax);
USE_ANAKIN_CONVERTER(detection_out);
USE_ANAKIN_CONVERTER(density_prior_box);
967 968
USE_ANAKIN_CONVERTER(dropout);
USE_ANAKIN_CONVERTER(sum);
N
nhzlx 已提交
969
USE_ANAKIN_CONVERTER(prior_box);
970 971 972 973 974
USE_ANAKIN_CONVERTER(leaky_relu);
USE_ANAKIN_CONVERTER(affine_channel);
USE_ANAKIN_CONVERTER(relu6);
USE_ANAKIN_CONVERTER(swish);
USE_ANAKIN_CONVERTER(shuffle_channel);
N
nhzlx 已提交
975
#endif