test_dynamic_engine.cc 6.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <glog/logging.h>
#include <gtest/gtest.h>

#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
#include "paddle/fluid/inference/tensorrt/engine.h"
21
#include "paddle/phi/common/data_type.h"
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
#if PADDLE_WITH_CUSPARSELT && IS_TRT_VERSION_GE(8000)
#include "paddle/fluid/inference/tensorrt/plugin/spmm_plugin.h"
#endif
#include "paddle/fluid/platform/enforce.h"
#include "paddle/phi/common/float16.h"

using float16 = phi::dtype::float16;
namespace paddle {
namespace inference {
namespace tensorrt {

class TensorRTDynamicEngineTest : public ::testing::Test {
 protected:
  void SetUp() override {
    ctx_ = new platform::CUDADeviceContext(platform::CUDAPlace(0));
    ctx_->SetAllocator(paddle::memory::allocation::AllocatorFacade::Instance()
                           .GetAllocator(platform::CUDAPlace(0), ctx_->stream())
                           .get());
    ctx_->SetHostAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
            .GetAllocator(paddle::platform::CPUPlace())
            .get());
    ctx_->SetZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
            .GetZeroAllocator(platform::CUDAPlace(0))
            .get());
    ctx_->SetPinnedAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
            .GetAllocator(paddle::platform::CUDAPinnedPlace())
            .get());
    ctx_->PartialInitWithAllocator();

    std::map<std::string, std::vector<int>> min_input_shape = {
        {"input", {16, 32, 1, 1}}};
    std::map<std::string, std::vector<int>> max_input_shape = {
        {"input", {16, 32, 1, 1}}};
    std::map<std::string, std::vector<int>> optim_input_shape = {
        {"input", {16, 32, 1, 1}}};

61 62 63 64 65 66 67 68 69
    engine_ = new TensorRTEngine(16,
                                 1 << 10,
                                 AnalysisConfig::Precision::kHalf,
                                 nullptr,
                                 0,
                                 min_input_shape,
                                 max_input_shape,
                                 optim_input_shape,
                                 false,
70
                                 phi::DataType::FLOAT32,
71
                                 NaiveLogger::Global());
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
    engine_->InitNetwork();
  }

  void TearDown() override {
    if (engine_) {
      delete engine_;
      engine_ = nullptr;
    }
  }

  void PrepareInputOutput(const std::vector<float16> &input,
                          std::vector<int> output_shape) {
    paddle::framework::TensorFromVector(input, *ctx_, &input_);
    output_.Resize(phi::make_ddim(output_shape));
  }

  void GetOutput(std::vector<float> *output) {
    paddle::framework::TensorToVector(output_, *ctx_, output);
  }

 protected:
  framework::Tensor input_;
  framework::Tensor output_;
  TensorRTEngine *engine_;
  platform::CUDADeviceContext *ctx_;
};

TEST_F(TensorRTDynamicEngineTest, test_spmm) {
  // Weight in CPU memory.
#if PADDLE_WITH_CUSPARSELT && IS_TRT_VERSION_GE(8000)
  float16 raw_weight[512];
  for (int i = 0; i < 128; i++) {
    if (i % 16 <= 7) {
      raw_weight[4 * i] = float16(1.0);
      raw_weight[4 * i + 1] = float16(0.0);
      raw_weight[4 * i + 2] = float16(0.0);
      raw_weight[4 * i + 3] = float16(4.0);
    } else {
      raw_weight[4 * i] = float16(0.0);
      raw_weight[4 * i + 1] = float16(2.0);
      raw_weight[4 * i + 2] = float16(3.0);
      raw_weight[4 * i + 3] = float16(0.0);
    }
  }
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
  float16 raw_bias[16] = {float16(0),
                          float16(1),
                          float16(0),
                          float16(2),
                          float16(0),
                          float16(3),
                          float16(0),
                          float16(4),
                          float16(0),
                          float16(5),
                          float16(0),
                          float16(6),
                          float16(0),
                          float16(7),
                          float16(0),
                          float16(8)};
132 133 134 135 136
  std::vector<void *> buffers(2);  // TRT binded inputs
  TensorRTEngine::Weight weight(nvinfer1::DataType::kHALF, raw_weight, 512);
  TensorRTEngine::Weight bias(nvinfer1::DataType::kHALF, raw_bias, 16);
  std::cout << "with_dynamic_shape: " << engine_->with_dynamic_shape()
            << std::endl;
137 138
  auto *x = engine_->DeclareInput(
      "input", nvinfer1::DataType::kHALF, nvinfer1::Dims4{-1, 32, 1, 1});
139 140 141 142

  plugin::SpmmPluginDynamic::Activation act =
      plugin::SpmmPluginDynamic::Activation::kNone;

143 144 145 146 147 148 149
  plugin::SpmmPluginDynamic *plugin =
      new plugin::SpmmPluginDynamic("CustomSpmmPluginDynamic",
                                    nvinfer1::DataType::kHALF,
                                    16,
                                    weight.get(),
                                    bias.get(),
                                    act);
150 151 152 153 154 155
  std::vector<nvinfer1::ITensor *> plugin_inputs;
  plugin_inputs.emplace_back(x);
  auto fc_layer = engine_->network()->addPluginV2(
      plugin_inputs.data(), plugin_inputs.size(), *plugin);

  LOG(INFO) << "create weights";
156 157 158
  PADDLE_ENFORCE_NOT_NULL(
      fc_layer,
      platform::errors::InvalidArgument("TRT SPMM layer building failed."));
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200

  engine_->DeclareOutput(fc_layer, 0, "y");
  engine_->FreezeNetwork();
  ASSERT_EQ(engine_->engine()->getNbBindings(), 2);

  std::vector<float16> x_v(512);
  for (int i = 0; i < 128; i++) {
    x_v[4 * i] = float16(1.0);
    x_v[4 * i + 1] = float16(2.0);
    x_v[4 * i + 2] = float16(3.0);
    x_v[4 * i + 3] = float16(4.0);
  }

  std::vector<float> y_cpu;
  PrepareInputOutput(x_v, {16, 16});

  auto *x_v_gpu_data = input_.mutable_data<float16>(ctx_->GetPlace());
  auto *y_gpu_data = output_.mutable_data<float>(ctx_->GetPlace());

  buffers[0] = reinterpret_cast<void *>(x_v_gpu_data);
  buffers[1] = reinterpret_cast<void *>(y_gpu_data);

  engine_->Execute(16, &buffers, ctx_->stream());
  LOG(INFO) << "to get output";
  GetOutput(&y_cpu);

  auto dims = engine_->GetITensor("y")->getDimensions();
  ASSERT_EQ(dims.nbDims, 4);
  ASSERT_EQ(dims.d[1], 16);
  ASSERT_EQ(y_cpu[0], 136);

  ASSERT_EQ(y_cpu[1], 105);
  ASSERT_EQ(y_cpu[32], 136);
  ASSERT_EQ(y_cpu[64], 136);
  ASSERT_EQ(y_cpu[96], 136);
#endif
  return;
}

}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle