imperative.cc 128.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/pybind/imperative.h"
16

17
#include <Python.h>
18 19 20 21
#include <pybind11/chrono.h>
#include <pybind11/complex.h>
#include <pybind11/functional.h>
#include <pybind11/stl.h>
22

23
#include <algorithm>
24
#include <memory>
25
#include <set>
J
Jiabin Yang 已提交
26
#include <string>
27
#include <unordered_map>
28
#include <unordered_set>
29
#include <utility>
J
Jiabin Yang 已提交
30
#include <vector>
31

J
Jiabin Yang 已提交
32
#include "paddle/fluid/eager/api/all.h"
33
#include "paddle/fluid/framework/scope_guard.h"
34
#include "paddle/fluid/imperative/all_reduce.h"
35
#include "paddle/fluid/imperative/amp_auto_cast.h"
36
#include "paddle/fluid/imperative/basic_engine.h"
37
#include "paddle/fluid/imperative/bkcl_context.h"
38
#include "paddle/fluid/imperative/data_loader.h"
39
#include "paddle/fluid/imperative/gloo_context.h"
40
#include "paddle/fluid/imperative/hccl_context.h"
K
kuizhiqing 已提交
41
#include "paddle/fluid/imperative/heter_ccl_context.h"
42
#include "paddle/fluid/imperative/hooks.h"
43
#include "paddle/fluid/imperative/layer.h"
J
Jiabin Yang 已提交
44
#include "paddle/fluid/imperative/nccl_context.h"
45
#include "paddle/fluid/imperative/partial_grad_engine.h"
46
#include "paddle/fluid/imperative/profiler.h"
47
#include "paddle/fluid/imperative/py_layer_fwd.h"
48
#include "paddle/fluid/imperative/reducer.h"
49
#include "paddle/fluid/imperative/tracer.h"
M
minqiyang 已提交
50
#include "paddle/fluid/imperative/type_defs.h"
51
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
52
#include "paddle/fluid/operators/utils.h"
53
#include "paddle/fluid/pybind/op_function.h"
54
#include "paddle/fluid/pybind/pybind_boost_headers.h"
L
Leo Chen 已提交
55
#include "paddle/fluid/pybind/tensor_py.h"
56

57 58 59
namespace paddle {
namespace pybind {

60 61
PyTypeObject *g_varbase_pytype = nullptr;

62 63
namespace py = ::pybind11;

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Python object is not type of %s", typeid(T).name()));
  }
}

class PyVariableWrapperHook : public imperative::VariableWrapperHook {
 public:
  explicit PyVariableWrapperHook(PyObject *func) : py_func_(func) {
    Py_INCREF(py_func_);
  }

  ~PyVariableWrapperHook() {
    py::gil_scoped_acquire gil;
    Py_DECREF(py_func_);
  }

  std::shared_ptr<imperative::VariableWrapper> operator()(
      const std::shared_ptr<imperative::VariableWrapper> &var) override {
    py::gil_scoped_acquire gil;
    VLOG(3) << "Call PyVariableWrapperHook for var " << var->Name();

    // 1. unpack temp VarBase from VariableWrapper
    std::shared_ptr<imperative::VarBase> tmp_varbase =
        std::make_shared<imperative::VarBase>(var);

    // 2. call hook and return
    PyObject *res = nullptr;
    try {
      res = PyObject_CallFunctionObjArgs(py_func_, py::cast(tmp_varbase).ptr(),
                                         nullptr);
    } catch (platform::EnforceNotMet &e) {
      throw std::move(e);
    } catch (std::exception &e) {
      PADDLE_THROW(platform::errors::Unavailable(
          "Hook function of Tensor raises an exception: %s.", e.what()));
    } catch (...) {
      PADDLE_THROW(platform::errors::Fatal(
          "Hook function of Tensor raises an unknown exception."));
    }

    PADDLE_ENFORCE_NOT_NULL(res,
                            platform::errors::Unavailable(
                                "Hook function of Tensor return a nullptr."));
    if (res == Py_None) {
      return var;
    }

    return PyObjectCast<std::shared_ptr<imperative::VarBase>>(res)->SharedVar();
  }

 private:
  PyObject *py_func_;
};

L
Leo Chen 已提交
123 124 125 126 127
static const platform::Place PyObjectToPlace(const py::object &place_obj) {
  if (py::isinstance<platform::CPUPlace>(place_obj)) {
    return place_obj.cast<platform::CPUPlace>();
  } else if (py::isinstance<platform::CUDAPlace>(place_obj)) {
    return place_obj.cast<platform::CUDAPlace>();
128 129
  } else if (py::isinstance<platform::XPUPlace>(place_obj)) {
    return place_obj.cast<platform::XPUPlace>();
L
Leo Chen 已提交
130 131
  } else if (py::isinstance<platform::CUDAPinnedPlace>(place_obj)) {
    return place_obj.cast<platform::CUDAPinnedPlace>();
132 133
  } else if (py::isinstance<platform::NPUPlace>(place_obj)) {
    return place_obj.cast<platform::NPUPlace>();
134 135
  } else if (py::isinstance<platform::Place>(place_obj)) {
    return place_obj.cast<platform::Place>();
F
fwenguang 已提交
136 137
  } else if (py::isinstance<platform::MLUPlace>(place_obj)) {
    return place_obj.cast<platform::MLUPlace>();
L
Leo Chen 已提交
138 139
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
140
        "Place should be one of "
F
fwenguang 已提交
141
        "Place/CPUPlace/XPUPlace/CUDAPlace/CUDAPinnedPlace/NPUPlace/MLUPlace"));
L
Leo Chen 已提交
142 143 144
  }
}

L
Leo Chen 已提交
145 146 147 148 149 150 151 152 153 154
// only initialize varbase, but not its tensor.
static void InitVarBaseOnly(imperative::VarBase *self, const std::string &name,
                            bool persistable = false, int stop_gradient = -1) {
  auto name_ = name == ""
                   ? imperative::GetCurrentTracer()->GenerateUniqueName(
                         "generated_tensor")
                   : name;

  VLOG(5) << "Init Tensor as: / name: " << name_
          << " / persistable: " << persistable
155
          << " / stop_gradient: " << stop_gradient;
L
Leo Chen 已提交
156 157 158 159 160 161 162 163 164 165 166 167 168 169
  new (self) imperative::VarBase(name_);
  if (stop_gradient != -1) {
    self->SetOverridedStopGradient(stop_gradient);
  }
  self->SetPersistable(persistable);
  self->SetType(framework::proto::VarType::LOD_TENSOR);
}

// initialize varbase and its tensor.
static void InitVarBaseAndTensor(
    imperative::VarBase *self, const py::array &array,
    const platform::Place &place, const std::string &name,
    bool persistable = false, bool zero_copy = false, int stop_gradient = -1) {
  InitVarBaseOnly(self, name, persistable, stop_gradient);
170
  auto *tensor = self->MutableVar()->GetMutable<framework::LoDTensor>();
L
Leo Chen 已提交
171
  VLOG(4) << "zero_copy: " << zero_copy;
L
Leo Chen 已提交
172
  if (platform::is_cpu_place(place)) {
173
    SetTensorFromPyArray<platform::CPUPlace>(tensor, array, place, zero_copy);
174
  } else if (platform::is_xpu_place(place)) {
175
    SetTensorFromPyArray<platform::XPUPlace>(tensor, array, place, zero_copy);
L
Leo Chen 已提交
176
  } else if (platform::is_gpu_place(place)) {
177
    SetTensorFromPyArray<platform::CUDAPlace>(tensor, array, place, zero_copy);
L
Leo Chen 已提交
178
  } else if (platform::is_cuda_pinned_place(place)) {
179 180
    SetTensorFromPyArray<platform::CUDAPinnedPlace>(tensor, array, place,
                                                    zero_copy);
181
  } else if (platform::is_npu_place(place)) {
182
    SetTensorFromPyArray<platform::NPUPlace>(tensor, array, place, zero_copy);
F
fwenguang 已提交
183
  } else if (platform::is_mlu_place(place)) {
184
    SetTensorFromPyArray<platform::MLUPlace>(tensor, array, place, zero_copy);
185
  } else {
L
Leo Chen 已提交
186
    PADDLE_THROW(platform::errors::InvalidArgument(
187
        "Place should be one of "
F
fwenguang 已提交
188
        "CPUPlace/XPUPlace/CUDAPlace/CUDAPinnedPlace/NPUPlace/MLUPlace"));
J
Jiabin Yang 已提交
189
  }
190 191 192 193 194
  self->SetDataType(tensor->type());
}

static void InitVarBaseFromNumpyWithKwargs(imperative::VarBase *self,
                                           const py::kwargs &kwargs) {
195
  VLOG(4) << "Init VarBase from kwargs: ";
L
Leo Chen 已提交
196 197 198 199 200 201
  auto persistable = kwargs.contains("persistable")
                         ? kwargs["persistable"].cast<bool>()
                         : false;
  auto zero_copy =
      kwargs.contains("zero_copy") ? kwargs["zero_copy"].cast<bool>() : false;
  auto name = kwargs.contains("name") ? kwargs["name"].cast<std::string>() : "";
202 203 204
  auto stop_gradient = kwargs.contains("stop_gradient")
                           ? kwargs["stop_gradient"].cast<int>()
                           : -1;
L
Leo Chen 已提交
205
  auto default_place = imperative::GetCurrentTracer()->ExpectedPlace();
L
Leo Chen 已提交
206 207 208 209 210 211 212 213 214 215 216 217

  if (kwargs.contains("value")) {
    auto array = kwargs["value"].cast<py::array>();
    // place is only used when array is given, otherwise, it is meaningless and
    // ignored
    auto place = kwargs.contains("place") ? PyObjectToPlace(kwargs["place"])
                                          : default_place;
    InitVarBaseAndTensor(self, array, place, name, persistable, zero_copy,
                         stop_gradient);
  } else {
    InitVarBaseOnly(self, name, persistable, stop_gradient);
  }
218
}
219

220 221 222
template <typename P>
static void InitVarBaseFromNumpyWithArg(imperative::VarBase *self,
                                        const py::array &array, const P &place,
L
Leo Chen 已提交
223 224
                                        bool persistable = false,
                                        bool zero_copy = false,
225 226 227 228 229
                                        std::string name = "",
                                        int stop_gradient = -1) {
  VLOG(4) << "Init VarBase from Arg: ";
  // 0: self, 1: value, 2: place, 3: persistable, 4: zero_copy, 5: name , 6:
  // stop_gradient
L
Leo Chen 已提交
230
  if (name == "") {
231 232
    name =
        imperative::GetCurrentTracer()->GenerateUniqueName("generated_tensor");
L
Leo Chen 已提交
233
  }
234 235
  VLOG(5) << "Init Tensor as: / name: " << name
          << " / persistable: " << persistable << " / zero_copy: " << zero_copy
236
          << " / stop_gradient: " << stop_gradient << " / at " << place;
L
Leo Chen 已提交
237
  new (self) imperative::VarBase(name);
238 239
  self->SetPersistable(persistable);
  auto *tensor = self->MutableVar()->GetMutable<framework::LoDTensor>();
240 241 242
  if (stop_gradient != -1) {
    self->SetOverridedStopGradient(stop_gradient);
  }
243 244 245 246 247 248
  SetTensorFromPyArray<P>(tensor, array, place, zero_copy);
  self->SetType(framework::proto::VarType::LOD_TENSOR);
  self->SetDataType(tensor->type());
}

static void InitVarBaseFromNumpyWithArgDefault(imperative::VarBase *self,
L
Leo Chen 已提交
249 250
                                               const py::array &array) {
  auto place = imperative::GetCurrentTracer()->ExpectedPlace();
251
  VLOG(4) << "Init VarBase from numpy at " << place;
L
Leo Chen 已提交
252
  InitVarBaseAndTensor(self, array, place, "");
253
}
254

B
Baibaifan 已提交
255 256 257
static void InitVarBaseFromTensorWithArgDefault(imperative::VarBase *self,
                                                const framework::Tensor &tensor,
                                                const std::string &name) {
258 259
  VLOG(4) << "Init VarBase";
  auto place = imperative::GetCurrentTracer()->ExpectedPlace();
B
Baibaifan 已提交
260 261 262 263 264
  auto name_ = name == ""
                   ? imperative::GetCurrentTracer()->GenerateUniqueName(
                         "generated_tensor")
                   : name;
  new (self) imperative::VarBase(name_);
265 266 267 268 269 270 271 272 273 274 275 276 277 278
  self->SetPersistable(false);
  self->SetType(framework::proto::VarType::LOD_TENSOR);
  self->SetDataType(tensor.type());
  auto *new_tensor = self->MutableVar()->GetMutable<framework::LoDTensor>();
  // Same place,share data directly
  if (place == tensor.place()) {
    new_tensor->ShareDataWith(tensor);
    VLOG(4) << "Same place, do ShareDataWith";
  } else {
    framework::TensorCopy(tensor, place, new_tensor);
    VLOG(4) << "Different place, do TensorCopy";
  }
}

279 280 281
template <typename P>
static void InitVarBaseFromTensorWithArg(imperative::VarBase *self,
                                         const framework::Tensor &tensor,
B
Baibaifan 已提交
282 283
                                         const P &place,
                                         const std::string &name) {
284
  VLOG(4) << "Init VarBase";
B
Baibaifan 已提交
285 286 287 288 289
  auto name_ = name == ""
                   ? imperative::GetCurrentTracer()->GenerateUniqueName(
                         "generated_tensor")
                   : name;
  new (self) imperative::VarBase(name_);
290 291 292 293 294 295 296 297 298 299 300 301 302 303
  self->SetPersistable(false);
  self->SetType(framework::proto::VarType::LOD_TENSOR);
  self->SetDataType(tensor.type());
  auto *new_tensor = self->MutableVar()->GetMutable<framework::LoDTensor>();
  // Same place,share data directly
  if (platform::is_same_place(place, tensor.place())) {
    new_tensor->ShareDataWith(tensor);
    VLOG(4) << "Same place, do ShareDataWith";
  } else {
    framework::TensorCopy(tensor, place, new_tensor);
    VLOG(4) << "Different place, do TensorCopy";
  }
}

304 305 306 307 308
static std::string GetTypeName(const imperative::VarBase &var) {
  if (var.Type() == framework::proto::VarType::RAW) {
    return "RAW";
  } else if (!var.Var().IsInitialized()) {
    return "nullptr";
309
  } else {
310
    return framework::ToTypeName(var.Var().Type());
311 312
  }
}
L
Leo Chen 已提交
313

314
using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;
315 316 317 318 319 320 321 322 323 324 325 326 327

// NOTE(zjl): py::handle is a very light wrapper of PyObject *.
// Unlike py::object, py::handle does not change reference count of PyObject *.
static std::vector<std::shared_ptr<imperative::VarBase>>
GetVarBaseListFromPyHandle(const py::handle &handle) {
  PyObject *py_obj = handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
    return {};
  }

  std::vector<std::shared_ptr<imperative::VarBase>> result;

328
  if (PyList_Check(py_obj)) {  // List of VarBase
329 330 331
    size_t len = PyList_GET_SIZE(py_obj);
    result.reserve(len);
    for (size_t i = 0; i < len; ++i) {
332 333 334
      PyObject *py_ivar = PyList_GET_ITEM(py_obj, i);
      PADDLE_ENFORCE_NOT_NULL(
          py_ivar, platform::errors::InvalidArgument("Python Object is NULL"));
335 336 337
      result.emplace_back(
          PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_ivar));
    }
338
  } else if (PyTuple_Check(py_obj)) {  // Tuple of VarBase
339 340 341
    size_t len = PyTuple_GET_SIZE(py_obj);
    result.reserve(len);
    for (size_t i = 0; i < len; ++i) {
342 343 344
      PyObject *py_ivar = PyTuple_GET_ITEM(py_obj, i);
      PADDLE_ENFORCE_NOT_NULL(
          py_ivar, platform::errors::InvalidArgument("Python Object is NULL"));
345 346 347
      result.emplace_back(
          PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_ivar));
    }
348 349 350
  } else {  // VarBase
    result.emplace_back(
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
351 352 353 354
  }

  return result;
}
355 356 357 358 359 360 361 362
static bool IsNumpyType(PyObject *obj) {
  // It is not a good way to judge the type of obj by its type'name. Maybe using
  // `PyArray_IsScalar` will be better. However, this interface cannot be used
  // by including pybind11, and it needs to compile with numpy.
  auto type_name = std::string(Py_TYPE(obj)->tp_name);
  return type_name == "numpy.int64" || type_name == "numpy.longlong" ||
         type_name == "numpy.int32" || type_name == "numpy.int16";
}
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407

static bool PyCheckTensor(PyObject *obj) {
  return py::isinstance<imperative::VarBase>(obj);
}

// cast numpy type form S to T, this may allocate new memory
template <class T, class S>
static py::array_t<T> CastNumpyType(py::array_t<S> array) {
  if (std::is_same<T, S>::value) {
    return array;
  }
  auto dim = array.ndim();
  std::vector<py::ssize_t> result_shape(dim);
  for (auto i = 0; i < dim; i++) {
    result_shape[i] = array.shape(i);
  }

  py::array_t<T> result(result_shape);

  return py::vectorize([](S s) { return static_cast<T>(s); })(array);
}

template <class T>
static py::array_t<T> CastNumpyArray(const py::object &array) {
  if (py::isinstance<py::array_t<float>>(array)) {
    return CastNumpyType<T>(array.cast<py::array_t<float>>());
  } else if (py::isinstance<py::array_t<double>>(array)) {
    return CastNumpyType<T>(array.cast<py::array_t<double>>());
  } else if (py::isinstance<py::array_t<int32_t>>(array)) {
    return CastNumpyType<T>(array.cast<py::array_t<int32_t>>());
  } else if (py::isinstance<py::array_t<int64_t>>(array)) {
    return CastNumpyType<T>(array.cast<py::array_t<int64_t>>());
  } else if (py::isinstance<py::array_t<bool>>(array)) {
    return CastNumpyType<T>(array.cast<py::array_t<bool>>());
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Value type error. The assign numpy value allows integer, float, "
        "double and bool, "
        "but received %s.",
        Py_TYPE(array.ptr())->tp_name));
  }
  // can't reach here
  return py::array_t<T>();
}

J
Jiabin Yang 已提交
408 409 410
static imperative::NameVarBaseMap ConvertToNameVarBaseMap(
    const PyNameVarBaseMap &map) {
  imperative::NameVarBaseMap result;
411 412 413 414 415 416
  for (auto &pair : map) {
    auto var_vec = GetVarBaseListFromPyHandle(pair.second);
    if (!var_vec.empty()) {
      result.emplace(pair.first, std::move(var_vec));
    }
  }
J
Jiabin Yang 已提交
417

418 419 420
  PADDLE_ENFORCE_EQ(
      PyErr_Occurred(), nullptr,
      platform::errors::InvalidArgument(py::str(py::handle(PyErr_Occurred()))));
421 422 423
  return result;
}

424 425 426 427 428 429 430 431
static bool PyCheckInteger(PyObject *obj) {
#if PY_VERSION_HEX < 0x03000000
  return (PyLong_Check(obj) || PyInt_Check(obj)) && !PyBool_Check(obj);
#else
  return PyLong_Check(obj) && !PyBool_Check(obj);
#endif
}

432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
static Py_ssize_t GetSliceIndexFromTensor(
    const std::shared_ptr<imperative::VarBase> &tensor_index) {
  const auto &tensor = tensor_index->Var().Get<framework::LoDTensor>();
  if (tensor.numel() == 1) {
    if (tensor.type() == framework::proto::VarType::INT32) {
      return static_cast<Py_ssize_t>(operators::GetValue<int32_t>(&tensor));
    } else if (tensor.type() == framework::proto::VarType::INT64) {
      return static_cast<Py_ssize_t>(operators::GetValue<int64_t>(&tensor));
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Currently, the type of tensor in slice indices only allows "
          "int32 and int64, please check the type of index tensor."));
    }
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Currently, tensor in slice indices only allows 1 element, "
        "but received %d.",
        tensor.numel()));
  }
}

453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
// NOTE(zhiqiu): Revised version of PySlice_GetIndices. From:
// https://github.com/python/cpython/blob/8d21aa21f2cbc6d50aab3f420bb23be1d081dac4/Objects/sliceobject.c#L103
// Original PySlice_GetIndices return wrong result when
// slice_item contains long int, such as arr[:180L].
// NOT sure why this happens !!!
// Besides, PySlice_GetIndices cannot raise error when float in slice item.
// So, I make a revised version of PySlice_GetIndices, named to
// _PySlice_GetIndices. Try to use _PySlice_Unpack which is more robust than
// PySlice_GetIndices in the future.
static int _PySlice_GetIndices(PySliceObject *r, Py_ssize_t length,
                               Py_ssize_t *start, Py_ssize_t *stop,
                               Py_ssize_t *step) {
  /* XXX support long ints */
  if (r->step == Py_None) {
    *step = 1;
  } else {
469
    if (PyCheckInteger(r->step) || IsNumpyType(r->step)) {
470
      *step = PyLong_AsLong(r->step);
471 472 473
    } else if (PyCheckTensor(r->step)) {
      *step = GetSliceIndexFromTensor(
          py::cast<std::shared_ptr<imperative::VarBase>>(r->step));
474 475
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
476 477
          "Currently, slice indices only allows None, integers, "
          "tensor(int) and numpy(int) in slice item, but received %s.",
478 479 480 481 482 483
          std::string(Py_TYPE(r->step)->tp_name)));
    }
  }
  if (r->start == Py_None) {
    *start = *step < 0 ? length - 1 : 0;
  } else {
484
    if (PyCheckInteger(r->start) || IsNumpyType(r->start)) {
485
      *start = PyLong_AsLong(r->start);
486 487 488
    } else if (PyCheckTensor(r->start)) {
      *start = GetSliceIndexFromTensor(
          py::cast<std::shared_ptr<imperative::VarBase>>(r->start));
489 490
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
491 492
          "Currently, slice indices only allows None, integers, "
          "tensor(int) and numpy(int) in slice item, but received %s.",
493 494 495
          std::string(Py_TYPE(r->start)->tp_name)));
    }
    if (*start < 0) *start += length;
496
    *start = std::max(*start, static_cast<Py_ssize_t>(0));
497 498 499 500
  }
  if (r->stop == Py_None) {
    *stop = *step < 0 ? -1 : length;
  } else {
501
    if (PyCheckInteger(r->stop) || IsNumpyType(r->stop)) {
502
      *stop = PyLong_AsLong(r->stop);
503 504 505
    } else if (PyCheckTensor(r->stop)) {
      *stop = GetSliceIndexFromTensor(
          py::cast<std::shared_ptr<imperative::VarBase>>(r->stop));
506 507
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
508 509
          "Currently, slice indices only allows None, integers, "
          "tensor(int) and numpy(int) in slice item, but received %s.",
510 511
          std::string(Py_TYPE(r->stop)->tp_name)));
    }
512
    if (0 < *step && *stop < 0) *stop += length;
513
    *stop = std::min(*stop, length);
514 515 516 517 518 519 520
  }
  if (*stop > length) return -1;
  if (*start >= length) return -1;
  if (*step == 0) return -1;
  return 0;
}

Z
zyfncg 已提交
521 522 523 524 525 526 527 528 529
static void ParseIndexingSlice(
    framework::LoDTensor *tensor, PyObject *_index,
    std::vector<int> *slice_axes, std::vector<int> *slice_starts,
    std::vector<int> *slice_ends, std::vector<int> *slice_strides,
    std::vector<int> *decrease_axis, std::vector<int> *none_axes,
    std::vector<int> *infer_flags, std::vector<int> *list_select_idxs,
    bool *list_select_flag) {
  // We allow indexing by Integers, Slices, Ellipsis, None, tuples of those
  // types, and list of Bool and Integers.
S
songyouwei 已提交
530
  // wrap to tuple
531 532

  // NOTE(zhiqiu): PyTuple_Pack increases refcount.
S
songyouwei 已提交
533
  PyObject *index = !PyTuple_Check(_index) ? PyTuple_Pack(1, _index) : _index;
534 535 536 537 538 539
  DEFINE_PADDLE_SCOPE_GUARD([index, _index]() {
    if (!PyTuple_Check(_index)) {
      Py_DECREF(index);
      VLOG(4) << "Call Py_DECREF";
    }
  });
S
songyouwei 已提交
540 541 542 543 544 545
  PADDLE_ENFORCE_EQ(
      tensor->IsInitialized(), true,
      platform::errors::InvalidArgument("tensor has not been initialized"));
  const auto &shape = tensor->dims();
  const int rank = shape.size();
  const int size = PyTuple_GET_SIZE(index);
546 547 548 549

  // specified_dims is the number of dimensions which indexed by Interger,
  // Slices.
  int specified_dims = 0;
550
  int ell_count = 0;
551 552 553 554
  for (int dim = 0; dim < size; ++dim) {
    PyObject *slice_item = PyTuple_GetItem(index, dim);
    if (PyCheckInteger(slice_item) || PySlice_Check(slice_item)) {
      specified_dims++;
555 556
    } else if (slice_item == Py_Ellipsis) {
      ell_count++;
557 558 559
    }
  }

560 561 562
  PADDLE_ENFORCE_LE(ell_count, 1,
                    platform::errors::InvalidArgument(
                        "An index can only have a single ellipsis ('...')"));
563
  int none_count = 0;
564 565 566
  for (int i = 0, dim = 0; i < size; ++i) {
    PyObject *slice_item = PyTuple_GetItem(index, i);

S
songyouwei 已提交
567 568
    infer_flags->push_back(1);
    int dim_len = shape[dim];
569
    if (PyCheckInteger(slice_item) || IsNumpyType(slice_item)) {
570
      // integer, PyLong_AsLong supports both int and long
S
songyouwei 已提交
571
      int start = static_cast<int>(PyLong_AsLong(slice_item));
H
hong 已提交
572
      auto s_t = start;
S
songyouwei 已提交
573
      start = start < 0 ? start + dim_len : start;
574
      if (start >= dim_len || start < 0) {
H
hong 已提交
575 576 577 578 579 580 581 582 583
        std::string str_error_message =
            "The starting index " + std::to_string(s_t) +
            " of slice is out of bounds in tensor " + std::to_string(dim) +
            "-th axis, it shound be in the range of [" +
            std::to_string(-dim_len) + ", " + std::to_string(dim_len) + ")";
        // py::index_error is corresponding to IndexError in Python
        // Used to indicate out of bounds access in __getitem__, __setitem__
        throw py::index_error(str_error_message);
      }
S
songyouwei 已提交
584 585 586 587 588
      slice_axes->push_back(dim);
      slice_starts->push_back(start);
      slice_ends->push_back(start + 1);
      slice_strides->push_back(1);
      decrease_axis->push_back(dim);
589 590
      dim++;
    } else if (PySlice_Check(slice_item)) {
591
      // slice item
S
songyouwei 已提交
592
      Py_ssize_t start, end, step;
593 594 595
      PySliceObject *p = reinterpret_cast<PySliceObject *>(slice_item);
      _PySlice_GetIndices(p, dim_len, &start, &end, &step);

S
songyouwei 已提交
596
      // :: or : or 0:dim_len:1
597
      if (start == 0 && end == dim_len && step == 1) {
598
        dim++;
599 600
        continue;
      }
S
songyouwei 已提交
601 602 603 604
      slice_axes->push_back(dim);
      slice_starts->push_back(start);
      slice_ends->push_back(end);
      slice_strides->push_back(step);
605 606 607
      dim++;
    } else if (slice_item == Py_Ellipsis) {
      dim += rank - specified_dims;
608
    } else if (slice_item == Py_None) {
609 610
      none_axes->push_back(dim + none_count);
      none_count++;
Z
zyfncg 已提交
611 612
    } else if (PyList_Check(slice_item)) {
      *list_select_flag = true;
Z
zyfncg 已提交
613 614 615 616 617 618
      PADDLE_ENFORCE_EQ(
          size, 1,
          platform::errors::InvalidArgument(
              "When index contains a list, its length is excepted to 1, "
              "but received %d",
              size));
Z
zyfncg 已提交
619 620 621 622 623 624 625 626 627 628 629 630
      bool all_bool = true;
      int list_size = PyList_GET_SIZE(slice_item);
      for (int j = 0; j < list_size; ++j) {
        PyObject *list_item = PyList_GetItem(slice_item, j);
        if (PyCheckInteger(list_item)) {
          all_bool = false;
        } else if (!PyBool_Check(list_item)) {
          PADDLE_THROW(platform::errors::InvalidArgument(
              "Only support int or bool in index list."));
        }
      }
      if (all_bool) {
Z
zyfncg 已提交
631 632 633 634 635 636 637
        PADDLE_ENFORCE_EQ(
            list_size, shape[0],
            platform::errors::InvalidArgument(
                "The dimension of bool index doesn't match indexed array along "
                "dimension 0, the target dimension is %d, but received %d.",
                shape[0], list_size));

Z
zyfncg 已提交
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
        for (int j = 0; j < list_size; ++j) {
          PyObject *list_item = PyList_GetItem(slice_item, j);
          if (list_item == Py_True) {
            list_select_idxs->push_back(j);
          }
        }
      } else {
        for (int j = 0; j < list_size; ++j) {
          PyObject *list_item = PyList_GetItem(slice_item, j);
          if (PyCheckInteger(list_item)) {
            list_select_idxs->push_back(
                static_cast<int>(PyLong_AsLong(list_item)));
          } else if (list_item == Py_True) {
            list_select_idxs->push_back(1);
          } else {
            list_select_idxs->push_back(0);
          }
        }
      }

658 659
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
660
          "Currently, Tensor.__indices__() only allows indexing "
Z
zyfncg 已提交
661 662 663
          "by Integers, Slices, Ellipsis, None, tuples of these types "
          "and list of Bool and Integers, but received "
          "%s in %dth slice item",
664
          std::string(Py_TYPE(slice_item)->tp_name), i + 1));
S
songyouwei 已提交
665 666
    }
  }
667 668

  // valid_index is the number of dimensions exclude None index
669
  const int valid_indexs = size - none_axes->size() - ell_count;
670 671 672 673
  PADDLE_ENFORCE_EQ(valid_indexs <= rank, true,
                    platform::errors::InvalidArgument(
                        "Too many indices (%d) for tensor of dimension %d.",
                        valid_indexs, rank));
S
songyouwei 已提交
674 675
}

676
template <typename P>
677 678 679
static void VarBaseCopy(std::shared_ptr<imperative::VarBase> &src,  // NOLINT
                        imperative::VarBase &dst,                   // NOLINT
                        const P &dst_device, const bool blocking) {
680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731
  if (dst.SharedVar()->IsEmpty()) {
    VLOG(3) << "deep copy Variable from " << src->Name() << " to "
            << dst.Name();
    dst.SetPersistable(src->Persistable());
    dst.SetDataType(src->DataType());
    dst.SetType(src->Type());
    dst.SetOverridedStopGradient(src->OverridedStopGradient());
    if (!src->SharedVar()->IsEmpty()) {
      if (src->Var().IsType<framework::LoDTensor>()) {
        auto &src_tensor = src->Var().Get<framework::LoDTensor>();
        auto *dst_tensor = dst.MutableVar()->GetMutable<framework::LoDTensor>();
        dst_tensor->set_lod(src_tensor.lod());
        framework::TensorCopy(src_tensor, dst_device, dst_tensor);
        if (blocking) {
          platform::DeviceContextPool::Instance().Get(dst_device)->Wait();
          auto src_device = src_tensor.place();
          if (!(src_device == dst_device)) {
            platform::DeviceContextPool::Instance().Get(src_device)->Wait();
          }
        }
      } else if (src->Var().IsType<framework::SelectedRows>()) {
        auto &src_selected_rows = src->Var().Get<framework::SelectedRows>();
        auto *dst_selected_rows =
            dst.MutableVar()->GetMutable<framework::SelectedRows>();
        dst_selected_rows->set_height(src_selected_rows.height());
        dst_selected_rows->set_rows(src_selected_rows.rows());
        framework::TensorCopy(src_selected_rows.value(), dst_device,
                              dst_selected_rows->mutable_value());
        if (blocking) {
          platform::DeviceContextPool::Instance().Get(dst_device)->Wait();
          auto src_device = src_selected_rows.value().place();
          if (!(src_device == dst_device)) {
            platform::DeviceContextPool::Instance().Get(src_device)->Wait();
          }
        }
      }

      if (!blocking) {
        IncreaseVarbaseReferenceCountUntilCopyComplete(src, dst_device);
      }

    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The source Tensor(%s) can not copy when it is empty.", src->Name()));
    }
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The destion Tensor(%s) can not copy when it is not empty.",
        dst.Name()));
  }
}

732
// Bind Methods
J
Jiabin Yang 已提交
733
void BindImperative(py::module *m_ptr) {
734 735
  auto &m = *m_ptr;

736 737
  BindOpFunctions(&m);

738 739
#ifndef _WIN32
  // Dygraph DataLoader signal handler
740 741 742 743 744 745 746 747 748 749 750 751 752
  m.def("_set_process_pids", [](int64_t key, py::object &obj) {
    PADDLE_ENFORCE_EQ(
        py::isinstance<py::tuple>(obj) || py::isinstance<py::list>(obj), true,
        platform::errors::InvalidArgument(
            "The subprocess ids set in DataLoader is illegal."
            "Expected data type is tuple or list, but received %s",
            obj.get_type()));
    py::list pids = py::cast<py::list>(obj);
    std::set<pid_t> pids_set = {};
    for (size_t i = 0; i < pids.size(); i++) {
      pids_set.insert(pids[i].cast<pid_t>());
    }
    imperative::SetLoadProcessPIDs(key, pids_set);
753
  });
754 755
  m.def("_erase_process_pids",
        [](int64_t key) { imperative::EraseLoadProcessPIDs(key); });
756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788
  m.def("_set_process_signal_handler",
        []() { imperative::SetLoadProcessSignalHandler(); });
  m.def("_throw_error_if_process_failed",
        []() { imperative::ThrowErrorIfLoadProcessFailed(); });
  // Dygraph DataLoader reader process & thread related functions
  m.def(
      "_convert_to_tensor_list",
      [](py::object &obj) -> py::list {
        // 0. input data check
        PADDLE_ENFORCE(
            py::isinstance<py::tuple>(obj) || py::isinstance<py::list>(obj),
            platform::errors::InvalidArgument(
                "The batch data read into DataLoader is illegal."
                "Expected data type is tuple or list, but received %s",
                obj.get_type()));
        py::list batch = py::cast<py::list>(obj);
        py::list tensors;
        for (size_t i = 0; i < batch.size(); ++i) {
          // 1. cast to python array
          auto array = batch[i].cast<py::array>();
          PADDLE_ENFORCE_NE(
              string::Sprintf("%s", array.dtype()).compare("object"), 0,
              platform::errors::InvalidArgument(
                  "Faild to convert input data to a regular ndarray.\n  * "
                  "Usually this means the input data contains nested "
                  "lists with different lengths.\n  * Check the reader "
                  "function passed to 'set_(sample/sample_list/batch)"
                  "_generator' to locate the data causes this issue."));
          // 2. construcct LoDTensor
          framework::LoDTensor t;
          SetTensorFromPyArray<platform::CPUPlace>(&t, array,
                                                   platform::CPUPlace(), true);
          // 3. allocate shared memory
789
          void *data_ptr = t.data();
790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806
          size_t data_size = t.numel() * framework::SizeOfType(t.type());
          auto shared_writer_holder =
              memory::allocation::AllocateMemoryMapWriterAllocation(data_size);
          // 4. maintain mmap fd set & backup ipc_name
          const std::string &ipc_name = shared_writer_holder->ipc_name();
          memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);
          // 5. copy data & reset holder
          memory::Copy(platform::CPUPlace(), shared_writer_holder->ptr(),
                       platform::CPUPlace(), data_ptr, data_size);
          t.ResetHolder(shared_writer_holder);
          // 6. append to result list
          tensors.append(t);
        }
        return tensors;
      },
      py::return_value_policy::take_ownership);

K
Kaipeng Deng 已提交
807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823
  m.def("_array_to_share_memory_tensor",
        [](py::object &obj) {
          // 1. cast to python array
          auto array = obj.cast<py::array>();
          PADDLE_ENFORCE_NE(
              string::Sprintf("%s", array.dtype()).compare("object"), 0,
              platform::errors::InvalidArgument(
                  "Faild to convert input data to a regular ndarray.\n  * "
                  "Usually this means the input data contains nested "
                  "lists with different lengths.\n  * Check the reader "
                  "function passed to 'set_(sample/sample_list/batch)"
                  "_generator' to locate the data causes this issue."));
          // 2. construcct LoDTensor
          framework::LoDTensor t;
          SetTensorFromPyArray<platform::CPUPlace>(&t, array,
                                                   platform::CPUPlace(), true);
          // 3. allocate shared memory
824
          void *data_ptr = t.data();
K
Kaipeng Deng 已提交
825 826 827 828 829 830 831 832 833 834 835 836 837 838 839
          size_t data_size = t.numel() * framework::SizeOfType(t.type());
          auto shared_writer_holder =
              memory::allocation::AllocateMemoryMapWriterAllocation(data_size);
          // 4. maintain mmap fd set & backup ipc_name
          const std::string &ipc_name = shared_writer_holder->ipc_name();
          memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);
          // 5. copy data & reset holder
          memory::Copy(platform::CPUPlace(), shared_writer_holder->ptr(),
                       platform::CPUPlace(), data_ptr, data_size);
          t.ResetHolder(shared_writer_holder);

          return t;
        },
        py::return_value_policy::take_ownership);

840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859
  m.def("_remove_tensor_list_mmap_fds", [](py::list &tensor_list) {
    for (size_t i = 0; i < tensor_list.size(); ++i) {
      auto t = tensor_list[i].cast<framework::LoDTensor>();
      auto *mmap_writer_allocation =
          dynamic_cast<memory::allocation::MemoryMapWriterAllocation *>(
              t.Holder().get());
      PADDLE_ENFORCE_NOT_NULL(
          mmap_writer_allocation,
          platform::errors::NotFound("The shared memory of LoDTensor in "
                                     "DataLoader's child process has been "
                                     "released."));
      memory::allocation::MemoryMapFdSet::Instance().Remove(
          mmap_writer_allocation->ipc_name());
    }
  });

  m.def("_cleanup_mmap_fds",
        []() { memory::allocation::MemoryMapFdSet::Instance().Clear(); });
#endif

860 861
  m.def("start_imperative_gperf_profiler",
        []() { imperative::StartProfile(); });
862 863 864 865
  m.def("_set_eager_tracer",
        [](const std::shared_ptr<imperative::Tracer> &tracer) {
          egr::Controller::Instance().SetCurrentTracer(tracer);
        });
866 867
  m.def("stop_imperative_gperf_profiler", []() { imperative::StopProfile(); });

Z
Zeng Jinle 已提交
868 869 870
  m.def("_is_dygraph_debug_enabled",
        []() { return imperative::IsDebugEnabled(); });
  m.def("_dygraph_debug_level", []() { return imperative::GetDebugLevel(); });
871 872
  m.def("_switch_tracer",
        [](const std::shared_ptr<imperative::Tracer> &tracer) {
J
Jiabin Yang 已提交
873 874 875
          if (egr::Controller::Instance().InEagerMode()) {
            egr::Controller::Instance().SetCurrentTracer(tracer);
          }
876
          imperative::SetCurrentTracer(tracer);
877
        });
J
Jiabin Yang 已提交
878 879 880 881 882 883
  m.def("_enable_eager_mode",
        []() { egr::Controller::Instance().SetInEagerMode(true); });
  m.def("_disable_eager_mode",
        []() { egr::Controller::Instance().SetInEagerMode(false); });
  m.def("_in_eager_mode",
        []() { return egr::Controller::Instance().InEagerMode(); });
884 885 886 887
  py::class_<imperative::VarBase, std::shared_ptr<imperative::VarBase>> varbase(
      m, "VarBase", R"DOC()DOC");
  g_varbase_pytype = (PyTypeObject *)varbase.ptr();  // NOLINT
  varbase.def_static("_alive_vars", &imperative::VarBase::AliveVarNames)
888 889 890 891 892 893 894
      .def("__init__",
           [](imperative::VarBase &self) {
             std::string name =
                 imperative::GetCurrentTracer()->GenerateUniqueName(
                     "generated_tensor");
             new (&self) imperative::VarBase(name);
           })
J
Jiabin Yang 已提交
895
      .def("__init__",
896 897 898
           [](imperative::VarBase &self, framework::proto::VarType::Type dtype,
              const std::vector<int> &dims, const py::handle &name,
              framework::proto::VarType::Type type, bool persistable) {
899
             VLOG(4) << "Init VarBase";
900 901 902
             std::string act_name = "";
             if (!name.ptr() || name.ptr() == Py_None) {
               act_name = imperative::GetCurrentTracer()->GenerateUniqueName(
903
                   "generated_tensor");
904 905 906 907
             } else {
               act_name = name.cast<std::string>();
             }
             new (&self) imperative::VarBase(act_name);
J
Jiabin Yang 已提交
908 909 910 911 912 913 914 915 916
             self.SetPersistable(persistable);
             self.SetType(type);
             self.SetDataType(dtype);
             if (type == framework::proto::VarType::LOD_TENSOR) {
               auto *tensor =
                   self.MutableVar()->GetMutable<framework::LoDTensor>();
               tensor->Resize(framework::make_ddim(dims));
             }
           })
917 918
      .def("__init__", &InitVarBaseFromNumpyWithArg<platform::CPUPlace>,
           py::arg("value"), py::arg("place"), py::arg("persistable") = false,
919 920
           py::arg("zero_copy") = false, py::arg("name") = "",
           py::arg("stop_gradient") = -1)
921 922 923 924
      .def("__init__", &InitVarBaseFromNumpyWithArg<platform::XPUPlace>,
           py::arg("value"), py::arg("place"), py::arg("persistable") = false,
           py::arg("zero_copy") = false, py::arg("name") = "",
           py::arg("stop_gradient") = -1)
925 926
      .def("__init__", &InitVarBaseFromNumpyWithArg<platform::CUDAPlace>,
           py::arg("value"), py::arg("place"), py::arg("persistable") = false,
927 928
           py::arg("zero_copy") = false, py::arg("name") = "",
           py::arg("stop_gradient") = -1)
929 930
      .def("__init__", &InitVarBaseFromNumpyWithArg<platform::CUDAPinnedPlace>,
           py::arg("value"), py::arg("place"), py::arg("persistable") = false,
931 932
           py::arg("zero_copy") = false, py::arg("name") = "",
           py::arg("stop_gradient") = -1)
933 934 935 936
      .def("__init__", &InitVarBaseFromNumpyWithArg<platform::NPUPlace>,
           py::arg("value"), py::arg("place"), py::arg("persistable") = false,
           py::arg("zero_copy") = false, py::arg("name") = "",
           py::arg("stop_gradient") = -1)
F
fwenguang 已提交
937 938 939 940
      .def("__init__", &InitVarBaseFromNumpyWithArg<platform::MLUPlace>,
           py::arg("value"), py::arg("place"), py::arg("persistable") = false,
           py::arg("zero_copy") = false, py::arg("name") = "",
           py::arg("stop_gradient") = -1)
L
Leo Chen 已提交
941
      .def("__init__", &InitVarBaseFromNumpyWithArgDefault, py::arg("value"))
B
Baibaifan 已提交
942 943
      .def("__init__", &InitVarBaseFromTensorWithArgDefault, py::arg("tensor"),
           py::arg("name") = "")
944
      .def("__init__", &InitVarBaseFromTensorWithArg<platform::CPUPlace>,
B
Baibaifan 已提交
945
           py::arg("tensor"), py::arg("place"), py::arg("name") = "")
946
      .def("__init__", &InitVarBaseFromTensorWithArg<platform::XPUPlace>,
B
Baibaifan 已提交
947
           py::arg("tensor"), py::arg("place"), py::arg("name") = "")
948
      .def("__init__", &InitVarBaseFromTensorWithArg<platform::CUDAPlace>,
B
Baibaifan 已提交
949
           py::arg("tensor"), py::arg("place"), py::arg("name") = "")
950
      .def("__init__", &InitVarBaseFromTensorWithArg<platform::CUDAPinnedPlace>,
B
Baibaifan 已提交
951
           py::arg("tensor"), py::arg("place"), py::arg("name") = "")
952
      .def("__init__", &InitVarBaseFromTensorWithArg<platform::NPUPlace>,
B
Baibaifan 已提交
953
           py::arg("tensor"), py::arg("place"), py::arg("name") = "")
F
fwenguang 已提交
954 955
      .def("__init__", &InitVarBaseFromTensorWithArg<platform::MLUPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("name") = "")
956
      .def("__init__", &InitVarBaseFromNumpyWithKwargs)
957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988
      .def(
          "__setitem_varbase__",
          [](std::shared_ptr<imperative::VarBase> &self, py::handle _index,
             py::object &value_obj) {
            VLOG(4) << "Call __setitem_varbase__";

            auto self_tensor =
                self->MutableVar()->GetMutable<framework::LoDTensor>();
            // NOTE(zhiqiu): PyTuple_Pack increases refcount while PyTuple_New
            // https://github.com/python/cpython/blob/24b63c695ae0a95b06379eaadace66735abac1e2/Objects/tupleobject.c#L251
            PyObject *index_ptr = !PyTuple_Check(_index.ptr())
                                      ? PyTuple_Pack(1, _index.ptr())
                                      : _index.ptr();
            DEFINE_PADDLE_SCOPE_GUARD([index_ptr, &_index]() {
              if (!PyTuple_Check(_index.ptr())) {
                Py_DECREF(index_ptr);
                VLOG(4) << "Call Py_DECREF";
              }
            });

            auto is_tensor = [](py::handle var) {
              if (!var.ptr() || var.ptr() == Py_None) {
                return false;
              }
              try {
                py::cast<std::shared_ptr<imperative::VarBase>>(var);
                return true;
              } catch (py::cast_error &) {
                return false;
              }
            };

989 990 991 992 993
            // NOTE(liym27):
            // Increase the version of VarBase self because __setitem__ is an
            // inplace operator for the VarBase self.
            self->BumpInplaceVersion();

994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
            // 1. Check argumnets
            bool parse_index = true;

            // Check whether _index can be parsed.
            const int size = PyTuple_GET_SIZE(index_ptr);
            for (int dim = 0; dim < size; ++dim) {
              PyObject *slice_item = PyTuple_GetItem(index_ptr, dim);
              if (!(PyCheckInteger(slice_item) || PySlice_Check(slice_item) ||
                    slice_item == Py_Ellipsis || slice_item == Py_None)) {
                parse_index = false;
                break;
              }
            }

            // 2. Call op set_value to speed up if the condition is met,
            // otherwise call TensorToPyArray.
            // TODO(liym27): Try not to call TensorToPyArray because it always
            // copys data to cpu place, which reduces performance.
            if (parse_index) {
              std::vector<int> axes, starts, ends, steps, decrease_axes,
                  none_axes, infer_flags, list_select_idxs;
              // if index is a list, list_select_flag will be true
              bool list_select_flag = false;
              ParseIndexingSlice(self_tensor, index_ptr, &axes, &starts, &ends,
                                 &steps, &decrease_axes, &none_axes,
                                 &infer_flags, &list_select_idxs,
                                 &list_select_flag);

              framework::AttributeMap attrs = {{"axes", axes},
                                               {"starts", starts},
                                               {"ends", ends},
                                               {"steps", steps},
                                               {"decrease_axes", decrease_axes},
                                               {"none_axes", none_axes}};

              imperative::NameVarBaseMap ins = {{"Input", {self}}};
              imperative::NameVarBaseMap outs = {{"Out", {self}}};

              const auto &tracer = imperative::GetCurrentTracer();

              if (tracer->HasGrad()) {
                PADDLE_ENFORCE_EQ(
                    self->IsLeaf() && !self->OverridedStopGradient(), false,
                    platform::errors::InvalidArgument(
                        "Leaf Tensor (%s) that doesn't stop gradient can't use "
                        "inplace strategy.",
                        self->Name()));
              }

              if (PyCheckTensor(value_obj.ptr())) {
                auto value_tensor =
                    value_obj.cast<std::shared_ptr<imperative::VarBase>>();
                ins.insert({"ValueTensor", {value_tensor}});
1047 1048 1049 1050 1051 1052

                // pass the stop_gradient from value to tensor
                if (!value_tensor->OverridedStopGradient() &&
                    self->OverridedStopGradient()) {
                  self->SetOverridedStopGradient(false);
                }
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
              } else if (py::isinstance<py::array>(value_obj)) {
                auto value_tensor = std::shared_ptr<imperative::VarBase>(
                    new imperative::VarBase(false,
                                            tracer->GenerateUniqueName()));
                py::object value = value_obj;
                if (self->DataType() == framework::proto::VarType::FP32) {
                  if (!py::isinstance<py::array_t<float>>(value_obj)) {
                    value = CastNumpyArray<float>(value_obj);
                  }
                } else if (self->DataType() ==
                           framework::proto::VarType::FP64) {
                  if (!py::isinstance<py::array_t<double>>(value_obj)) {
                    value = CastNumpyArray<double>(value_obj);
                  }
                } else if (self->DataType() ==
                           framework::proto::VarType::INT32) {
                  if (!py::isinstance<py::array_t<int32_t>>(value_obj)) {
                    value = CastNumpyArray<int32_t>(value_obj);
                  }
                } else if (self->DataType() ==
                           framework::proto::VarType::INT64) {
                  if (!py::isinstance<py::array_t<int64_t>>(value_obj)) {
                    value = CastNumpyArray<int64_t>(value_obj);
                  }
                } else if (self->DataType() ==
                           framework::proto::VarType::BOOL) {
                  if (!py::isinstance<py::array_t<bool>>(value_obj)) {
                    value = CastNumpyArray<bool>(value_obj);
                  }
                } else {
                  PADDLE_THROW(platform::errors::InvalidArgument(
                      "When assign a numpy.np value to a paddle.Tensor, "
                      "the data type of the paddle.Tensor must be bool, "
                      "float32, int32 or int64, "
                      "please check the type of tensor."));
                }

                SetTensorFromPyArray(value_tensor->MutableVar()
                                         ->GetMutable<framework::LoDTensor>(),
                                     value, self->Place(), false);
                ins.insert({"ValueTensor", {value_tensor}});

              } else {
                // convert the value to self data type
                if (py::isinstance<py::float_>(value_obj) ||
                    py::isinstance<py::int_>(value_obj) ||
                    py::isinstance<py::bool_>(value_obj)) {
                  if (self->DataType() == framework::proto::VarType::FP32) {
                    attrs["fp32_values"] =
                        std::vector<float>{value_obj.cast<float>()};
                  } else if (self->DataType() ==
                             framework::proto::VarType::FP64) {
                    attrs["fp64_values"] =
                        std::vector<double>{value_obj.cast<double>()};
                  } else if (self->DataType() ==
                             framework::proto::VarType::INT32) {
                    attrs["int32_values"] =
                        std::vector<int32_t>{value_obj.cast<int32_t>()};
                  } else if (self->DataType() ==
                             framework::proto::VarType::INT64) {
                    attrs["int64_values"] =
                        std::vector<int64_t>{value_obj.cast<int64_t>()};
                  } else if (self->DataType() ==
                             framework::proto::VarType::BOOL) {
                    attrs["bool_values"] =
                        std::vector<int>{value_obj.cast<bool>()};
                  } else {
                    PADDLE_THROW(platform::errors::InvalidArgument(
                        "When assign a value to a paddle.Tensor, "
                        "the data type of the paddle.Tensor must be bool, "
                        "float32, int32 or int64, "
                        "please check the type of tensor."));
                  }
                  attrs["shape"] = std::vector<int64_t>{1};

                } else {
                  PADDLE_THROW(platform::errors::InvalidArgument(
                      "Value type error. The assign value allows "
                      "numpy.ndarray, integer, float or bool, "
                      "but received %s.",
                      Py_TYPE(value_obj.ptr())));
                }
              }

              {
                // Release gil and do tracing
                py::gil_scoped_release release;
                tracer->TraceOp("set_value", ins, outs, std::move(attrs),
                                {{"Input", "Out"}});
              }
            } else {
              auto self_numpy = TensorToPyArray(*self_tensor);
              VLOG(4) << "parse_index is false";
              if (is_tensor(_index)) {
                VLOG(4) << "index is tensor";
                auto index_var =
                    py::cast<std::shared_ptr<imperative::VarBase>>(_index);
                auto index_tensor =
                    index_var->MutableVar()->GetMutable<framework::LoDTensor>();
                auto index_numpy = TensorToPyArray(*index_tensor);
                self_numpy[index_numpy] = value_obj;
              } else {
                VLOG(4) << "index is not tensor";
                self_numpy[_index] = value_obj;
              }
              SetTensorFromPyArray(self_tensor, self_numpy,
                                   self_tensor->place(), false);
            }
          })
1162
      .def("_getitem_index_not_tensor",
S
songyouwei 已提交
1163
           [](std::shared_ptr<imperative::VarBase> &self, py::handle _index) {
1164
             VLOG(4) << "Call _getitem_index_not_tensor";
1165
             std::vector<int> slice_axes, slice_starts, slice_ends,
Z
zyfncg 已提交
1166 1167 1168 1169
                 slice_strides, decrease_axis, none_axes, infer_flags,
                 list_select_idxs;
             // if index is a list, list_select_flag will be true
             bool list_select_flag = false;
S
songyouwei 已提交
1170 1171 1172 1173
             auto tensor =
                 self->MutableVar()->GetMutable<framework::LoDTensor>();
             ParseIndexingSlice(tensor, _index.ptr(), &slice_axes,
                                &slice_starts, &slice_ends, &slice_strides,
Z
zyfncg 已提交
1174 1175
                                &decrease_axis, &none_axes, &infer_flags,
                                &list_select_idxs, &list_select_flag);
1176 1177 1178
             // release gil and do tracing
             py::gil_scoped_release release;
             const auto &tracer = imperative::GetCurrentTracer();
1179

Z
zyfncg 已提交
1180
             auto out = slice_axes.empty() && !list_select_flag
1181 1182 1183 1184
                            ? self
                            : std::shared_ptr<imperative::VarBase>(
                                  new imperative::VarBase(
                                      tracer->GenerateUniqueName()));
Z
zyfncg 已提交
1185

1186
             if (!slice_axes.empty()) {
S
songyouwei 已提交
1187
               imperative::NameVarBaseMap ins = {{"Input", {self}}};
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
               framework::AttributeMap attrs = {
                   {"axes", slice_axes},
                   {"starts", slice_starts},
                   {"ends", slice_ends},
                   {"infer_flags", infer_flags},
                   {"decrease_axis", decrease_axis}};
               imperative::NameVarBaseMap outs = {{"Out", {out}}};
               std::string op_type = "slice";
               for (auto stride : slice_strides) {
                 if (stride != 1) {
                   op_type = "strided_slice";
                   attrs.insert({"strides", slice_strides});
                   attrs.erase("decrease_axis");
                   break;
                 }
               }
               tracer->TraceOp(op_type, ins, outs, std::move(attrs));
             }
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
             if (!none_axes.empty()) {
               // Deal with cases when all axes are decreased.
               // After slice, the shape of out is [1], which should have been
               // [], but Paddle doesn't support scalar.
               // In order to ensure the correctness of the final shape of out,
               // one dimension of out needs to be decreased.
               // For example:
               // # x.shape: (2,3,4)
               // out = x[0, 1, 1, None] # out.shape : (1)
               if (static_cast<int>(decrease_axis.size()) ==
                   tensor->dims().size()) {
                 none_axes.pop_back();
               }
               if (!none_axes.empty()) {
                 // Deal with cases that decrease_axes is not empty
                 // For example:
                 // # x.shape: (2,3,4)
                 // out = x[0, 0:2, None] # out.shape : (2, 1, 4)
                 for (auto &axis : none_axes) {
                   int len = 0;
                   for (int da : decrease_axis) {
                     if (da < axis) {
                       len++;
                     }
                   }
                   axis -= len;
                 }

                 imperative::NameVarBaseMap ins = {{"X", {out}}};
                 framework::AttributeMap attrs = {{"axes", none_axes}};
                 auto new_out = std::shared_ptr<imperative::VarBase>(
                     new imperative::VarBase(tracer->GenerateUniqueName()));
                 auto out_xshape = std::shared_ptr<imperative::VarBase>(
                     new imperative::VarBase(tracer->GenerateUniqueName()));
                 imperative::NameVarBaseMap outs = {{"Out", {new_out}},
                                                    {"XShape", {out_xshape}}};
                 tracer->TraceOp("unsqueeze2", ins, outs, std::move(attrs));

                 return new_out;
               }
             }

Z
zyfncg 已提交
1248 1249 1250 1251 1252 1253 1254 1255
             // the index is a list
             if (list_select_flag) {
               auto select_index = std::shared_ptr<imperative::VarBase>(
                   new imperative::VarBase(tracer->GenerateUniqueName()));
               auto *idx_tensor = select_index->MutableVar()
                                      ->GetMutable<framework::LoDTensor>();
               auto *dev_ctx = platform::DeviceContextPool::Instance().Get(
                   tracer->ExpectedPlace());
1256 1257
               paddle::framework::TensorFromVector(list_select_idxs, *dev_ctx,
                                                   idx_tensor);
Z
zyfncg 已提交
1258 1259 1260 1261 1262 1263 1264

               imperative::NameVarBaseMap ins = {{"X", {self}},
                                                 {"Index", {select_index}}};
               imperative::NameVarBaseMap outs = {{"Out", {out}}};
               tracer->TraceOp("index_select", ins, outs, {{"dim", 0}});
             }

1265
             return out;
1266
           })
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
      .def(
          "_getitem_from_offset",
          [](std::shared_ptr<imperative::VarBase> &self, const py::args &args) {
            const auto &tensor = self->Var().Get<framework::LoDTensor>();
            PADDLE_ENFORCE_EQ(
                tensor.IsInitialized(), true,
                platform::errors::InvalidArgument(
                    "Tensor of %s is Empty, please check if it has no data.",
                    self->Name()));

            const auto &tensor_dims = tensor.dims();

            std::vector<size_t> dims(tensor_dims.size());
            std::vector<size_t> strides(tensor_dims.size());

            size_t numel = 1;
            for (int i = tensor_dims.size() - 1; i >= 0; --i) {
              strides[i] = numel;
              dims[i] = static_cast<size_t>(tensor_dims[i]);
              numel *= dims[i];
            }
            size_t offset = 0;
            if (args.empty()) {
              PADDLE_ENFORCE_EQ(
                  numel, 1,
                  platform::errors::InvalidArgument(
                      "only one element tensors can be converted to Python "
                      "scalars when no input coordinates"));
            } else if (args.size() == 1) {
              offset = args[0].cast<size_t>();
              PADDLE_ENFORCE_LT(
                  offset, numel,
                  platform::errors::InvalidArgument(
                      "index %d is out of bounds for size %d", offset, numel));
            } else {
              PADDLE_ENFORCE_EQ(args.size(), dims.size(),
                                platform::errors::InvalidArgument(
                                    "incorrect number of indices for Tensor"));

              for (size_t i = 0; i < args.size(); ++i) {
                size_t index = args[i].cast<size_t>();
                PADDLE_ENFORCE_LT(
                    index, dims[i],
                    platform::errors::InvalidArgument(
                        "index %d is out fo bounds for axis %d with size %d",
                        index, i, dims[i]));
                offset += index * strides[i];
              }
            }
#define TENSOR_TO_PY_SCALAR(T, proto_type)                                   \
  if (tensor.type() == proto_type) {                                         \
    std::string py_dtype_str = details::TensorDTypeToPyDTypeStr(proto_type); \
    T b = TensorGetElement<T>(tensor, offset);                               \
    return py::array(py::dtype(py_dtype_str.c_str()), {}, {},                \
                     static_cast<void *>(&b));                               \
  }

            _ForEachDataType_(TENSOR_TO_PY_SCALAR);
#undef TENSOR_TO_PY_SCALAR
            PADDLE_THROW(platform::errors::Unimplemented(
                "Unsupported tensor data type: %s",
                framework::DataTypeToString(tensor.type())));
          },
          py::return_value_policy::copy)
1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352
      .def("_inplace_version",
           [](imperative::VarBase &self) -> uint32_t {
             const auto &var = self.MutableVar();
             PADDLE_ENFORCE_EQ(
                 var->IsInitialized(), true,
                 platform::errors::InvalidArgument(
                     "Tensor of %s is Empty, please check if it has no data.",
                     self.Name()));
             return var->CurrentInplaceVersion();
           })
      .def("_bump_inplace_version",
           [](std::shared_ptr<imperative::VarBase> &self) {
             // NOTE(liym27): _bump_inplace_version is only used for inplace
             // operation
             self->BumpInplaceVersion();
           },
           R"DOC(
        **Notes**:
            **This API is ONLY available in Dygraph mode.**
            **This is a very low level API. Users should not use it directly. **
         Bump the version whenever the Tensor is modified through an inplace operation.
            )DOC")
1353
      .def("numpy",
1354

1355 1356 1357 1358 1359 1360
           [](imperative::VarBase &self) -> py::array {
             const auto &tensor =
                 self.MutableVar()->Get<framework::LoDTensor>();
             PADDLE_ENFORCE_EQ(
                 tensor.IsInitialized(), true,
                 platform::errors::InvalidArgument(
1361
                     "Tensor of %s is Empty, please check if it has no data.",
1362 1363 1364 1365
                     self.Name()));
             return TensorToPyArray(tensor, true);
           },
           R"DOC(
Z
Zhou Wei 已提交
1366 1367
        Returns a numpy array shows the value of current Tensor.
        
1368
        Returns:
Z
Zhou Wei 已提交
1369
            ndarray: The numpy value of current Tensor.
1370 1371

        Returns type:
Z
Zhou Wei 已提交
1372
            ndarray: dtype is same as current Tensor
1373 1374 1375 1376

        Examples:
            .. code-block:: python

Z
Zhou Wei 已提交
1377
                import paddle
1378 1379
                import numpy as np
                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
Z
Zhou Wei 已提交
1380 1381 1382 1383
                linear = paddle.nn.Linear(32, 64)
                data = paddle.to_tensor(data)
                x = linear(data)
                print(x.numpy())
1384
       )DOC")
1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447
      .def("detach",
           [](const imperative::VarBase
                  &self) -> std::shared_ptr<imperative::VarBase> {
             PADDLE_ENFORCE_EQ(
                 self.Var().IsInitialized(), true,
                 platform::errors::InvalidArgument(
                     "Tensor %s has not been initialized!", self.Name()));

             PADDLE_ENFORCE_EQ(
                 self.Var().IsType<framework::LoDTensor>() ||
                     self.Var().IsType<framework::SelectedRows>(),
                 true,
                 platform::errors::InvalidArgument(
                     "Type of Tensor[%s] must be LoDTensor or SelectedRows!",
                     self.Name()));

             auto detach_var = std::make_shared<imperative::VarBase>(
                 true, "detach_" + self.Name());

             detach_var->SetPersistable(self.Persistable());
             detach_var->SetType(self.Type());
             detach_var->SetDataType(self.DataType());

             if (self.Var().IsType<framework::LoDTensor>()) {
               const auto &origin_tensor =
                   self.Var().Get<framework::LoDTensor>();
               PADDLE_ENFORCE_EQ(
                   origin_tensor.IsInitialized(), true,
                   platform::errors::InvalidArgument(
                       "Tensor %s has not been initialized!", self.Name()));

               auto *detach_tensor =
                   detach_var->MutableVar()->GetMutable<framework::LoDTensor>();
               detach_tensor->ShareDataWith(origin_tensor);
               // NOTE(liym27): Call ShareInplaceVersionCounterWith to share the
               // same TensorInplaceVersion, which is used to check whether
               // inplace
               // operations are correct.
               detach_tensor->ShareInplaceVersionCounterWith(origin_tensor);
             } else {
               const auto &origin_selected_rows =
                   self.Var().Get<framework::SelectedRows>();
               PADDLE_ENFORCE_EQ(
                   origin_selected_rows.value().IsInitialized(), true,
                   platform::errors::InvalidArgument(
                       "Tensor %s has not been initialized!", self.Name()));

               auto *detach_selected_rows =
                   detach_var->MutableVar()
                       ->GetMutable<framework::SelectedRows>();
               detach_selected_rows->set_height(origin_selected_rows.height());
               detach_selected_rows->set_rows(origin_selected_rows.rows());
               detach_selected_rows->mutable_value()->ShareDataWith(
                   origin_selected_rows.value());
               detach_selected_rows->mutable_value()
                   ->ShareInplaceVersionCounterWith(
                       origin_selected_rows.value());
             }
             VLOG(3) << "The detached Tensor(" << detach_var->Name()
                     << ") share data with " << self.Name();
             return detach_var;
           },
           py::return_value_policy::take_ownership, R"DOC(
1448

1449
        Returns a new Tensor, detached from the current graph.
Z
Zhou Wei 已提交
1450 1451
        It will share data with origin Tensor and always doesn't have a Tensor copy.
        In addition, the detached Tensor doesn't provide gradient propagation.
1452

1453
        Returns: The detached Tensor.
1454 1455 1456 1457

        Examples:
            .. code-block:: python

1458
                import paddle
Z
Zhou Wei 已提交
1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483

                x = paddle.to_tensor(1.0, stop_gradient=False)
                detach_x = x.detach()
                detach_x[:] = 10.0
                print(x)  # Tensor(shape=[1], dtype=float32, place=CPUPlace, stop_gradient=False,
                          #        [10.])
                y = x**2
                y.backward()
                print(x.grad)         # [20.0]
                print(detach_x.grad)  # None, 'stop_gradient=True' by default

                detach_x.stop_gradient = False # Set stop_gradient to be False, supported auto-grad
                z = detach_x**3
                z.backward()

                print(x.grad)         # [20.0], detach_x is detached from x's graph, not affect each other
                print(detach_x.grad)  # [300.0], detach_x has its own graph

                # Due to sharing of data with origin Tensor, There are some unsafe operations:
                y = 2 * x
                detach_x[:] = 5.0
                y.backward() 
                # It will raise Error:
                #   one of the variables needed for gradient computation has been modified by an inplace operation.
             
1484
       )DOC")
1485 1486
      .def("clear_gradient", &imperative::VarBase::ClearGradient,
           py::arg("set_to_zero") = true, R"DOC(
1487

1488
        Only for Tensor that has gradient, normally we use this for Parameters since other temporary Tensor doesen't has gradient.
1489

1490
        The Gradient of current Tensor will be set to ``0`` .
1491 1492 1493 1494 1495 1496

        Returns:  None

        Examples:
             .. code-block:: python

1497
                import paddle
Z
Zhou Wei 已提交
1498 1499 1500 1501 1502 1503 1504
                input = paddle.uniform([10, 2])
                linear = paddle.nn.Linear(2, 3)
                out = linear(input)
                out.backward()
                print("Before clear_gradient, linear.weight.grad: {}".format(linear.weight.grad))
                linear.weight.clear_gradient()
                print("After clear_gradient, linear.weight.grad: {}".format(linear.weight.grad))
1505
      )DOC")
1506 1507 1508
      .def("_gradient_set_empty", &imperative::VarBase::_GradientSetEmpty,
           py::arg("set_is_empty") = true)
      .def("_is_gradient_set_empty", &imperative::VarBase::_IsGradientSetEmpty)
Z
Zhou Wei 已提交
1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
      .def("clone",
           [](std::shared_ptr<imperative::VarBase> &self) {
             const auto &tensor = self->Var().Get<framework::LoDTensor>();
             PADDLE_ENFORCE_EQ(
                 tensor.IsInitialized(), true,
                 platform::errors::InvalidArgument(
                     "%s has not been initialized", self->Name()));
             auto tracer = imperative::GetCurrentTracer();
             auto new_var = std::make_shared<imperative::VarBase>(
                 true, tracer->GenerateUniqueName(self->Name() + "_clone"));
             framework::AttributeMap attrs;
             imperative::NameVarBaseMap ins = {{"X", {self}}};
             imperative::NameVarBaseMap outs = {{"Out", {new_var}}};
             tracer->TraceOp("assign", ins, outs, attrs);
             return new_var;
           },
           py::return_value_policy::copy, R"DOC(

        Returns a new Tensor, which is clone of origin Tensor, and it remains in the current graph.
        It will always have a Tensor copy.
        Tn addition, the cloned Tensor provides gradient propagation.

        Returns: The cloned Tensor.

        Examples:
            .. code-block:: python

              import paddle

              x = paddle.to_tensor(1.0, stop_gradient=False)
              clone_x = x.clone()
              y = clone_x**2
              y.backward()
              print(clone_x.stop_gradient) # False
              print(clone_x.grad)          # [2.0], support gradient propagation
              print(x.stop_gradient)       # False
              print(x.grad)                # [2.0], clone_x support gradient propagation for x

              x = paddle.to_tensor(1.0)
              clone_x = x.clone()
              clone_x.stop_gradient = False
              z = clone_x**3
              z.backward()
              print(clone_x.stop_gradient) # False
              print(clone_x.grad)          # [3.0], support gradient propagation
              print(x.stop_gradient) # True
              print(x.grad)          # None
       )DOC")
L
Leo Chen 已提交
1557 1558 1559 1560 1561 1562
      .def("_grad_name", &imperative::VarBase::GradVarName)
      .def("_grad_value",
           [](imperative::VarBase &self) {
             return self.MutableGradVar()->Get<framework::LoDTensor>();
           },
           py::return_value_policy::reference)
1563 1564 1565 1566
      .def("_set_grad_type",
           [](imperative::VarBase &self, framework::proto::VarType::Type type) {
             self.MutableGradVarBase()->SetType(type);
           })
1567
      .def("_reset_grad_inplace_version",
1568
           [](imperative::VarBase &self, bool set_to_zero) {
1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579
             /*
             *** This interfaceis a complete hack ***
             reset_grad_inplace_version removes all inplace related records to
             Grad VarBase/VariableWrapper,
             the essential purpose of which is to let you use inplace operations
             as if using its non-inplaced version,
             which of course will cause unexpected consequences if not used with
             care.
             Make sure you fully understand what you're doing before make use of
             this interface, and prepare for the worst.
             */
1580 1581
             py::gil_scoped_release release;

1582 1583 1584
             if (self.HasGradVar()) {
               auto grad_var = self.GradVarBase();
               auto var_wrapper = grad_var->SharedVar();
1585 1586 1587
               if (var_wrapper) {
                 var_wrapper->ResetInplaceVersion(set_to_zero);
               }
1588 1589
             }
           })
1590
      .def("_grad_ivar",
J
Jiabin Yang 已提交
1591 1592
           [](const imperative::VarBase &self) {
             auto &grad_var = self.GradVarBase();
1593

1594 1595 1596 1597 1598 1599 1600 1601
             if (grad_var && grad_var->Var().IsInitialized()) {
               auto *tensor =
                   grad_var->MutableVar()->IsType<framework::LoDTensor>()
                       ? grad_var->MutableVar()
                             ->GetMutable<framework::LoDTensor>()
                       : grad_var->MutableVar()
                             ->GetMutable<framework::SelectedRows>()
                             ->mutable_value();
1602

1603 1604 1605
               if (tensor->IsInitialized()) {
                 return grad_var;
               }
J
Jiabin Yang 已提交
1606
             }
1607
             return std::shared_ptr<imperative::VarBase>(nullptr);
J
Jiabin Yang 已提交
1608 1609
           },
           py::return_value_policy::copy)
C
chentianyu03 已提交
1610 1611 1612 1613
      .def("_set_grad_ivar",
           [](imperative::VarBase &self, imperative::VarBase &grad) {
             self.SetGradVarBase(grad);
           })
1614 1615 1616 1617 1618 1619 1620 1621
      .def("_is_sparse",
           [](imperative::VarBase &self) {
             return self.Var().IsType<framework::SelectedRows>();
           })
      .def("_allreduce",
           [](imperative::VarBase &self,
              const imperative::ParallelStrategy &strategy) {
             if (strategy.nranks_ > 1) {
1622
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639
#if NCCL_VERSION_CODE >= 2212
               imperative::AllReduce(self.Var(), self.MutableVar(), strategy);
#else
               if (!self.Var().IsType<framework::SelectedRows>()) {
                 imperative::AllReduce(self.Var(), self.MutableVar(), strategy);
               } else {
                 PADDLE_THROW(platform::errors::Unimplemented(
                     "Imperative SelectedRows allreduce is not supported when "
                     "paddle is compiled with NCCL verison lower than v2.2.12. "
                     "You can set is_sparse=False for the Layer containing "
                     "this argument, such as Embedding(is_sparse=False)."));
               }
#endif  // NCCL_VERSION_CODE
#else
               PADDLE_THROW(platform::errors::Unimplemented(
                   "Imperative allreduce is not supported when paddle is "
                   "not compiled with NCCL."));
1640
#endif  // PADDLE_WITH_NCCL or PADDLE_WITH_RCCL
1641 1642 1643
             }
           },
           py::call_guard<py::gil_scoped_release>())
1644 1645 1646
      .def("_register_grad_hook",
           [](imperative::VarBase &self, const py::handle &hook) {
             PADDLE_ENFORCE_EQ(
1647
                 !self.OverridedStopGradient() && self.HasGradVar(), true,
1648
                 platform::errors::InvalidArgument(
1649 1650 1651
                     "Cannot register gradient hook on a Tensor that stop "
                     "gradient or without gradient."));
             return self.GradVarBase()->AddVariableWrapperHook(
1652 1653 1654 1655 1656
                 std::make_shared<PyVariableWrapperHook>(hook.ptr()));
           })
      .def("_remove_grad_hook",
           [](imperative::VarBase &self, int64_t hook_id) {
             PADDLE_ENFORCE_EQ(
1657
                 !self.OverridedStopGradient() && self.HasGradVar(), true,
1658
                 platform::errors::InvalidArgument(
1659 1660 1661
                     "Cannot remove gradient hook on a Tensor that stop "
                     "gradient or without gradient."));
             return self.GradVarBase()->RemoveVariableWrapperHook(hook_id);
1662
           })
1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677
      .def("_register_void_function_post_hook",
           [](imperative::VarBase &self, const py::handle &hook) {
             PADDLE_ENFORCE_EQ(
                 !self.OverridedStopGradient() && self.HasGradVar(), true,
                 platform::errors::InvalidArgument(
                     "Cannot register void function post hook on a Tensor that "
                     "stop "
                     "gradient or without gradient."));
             auto py_func = PyObjectCast<std::function<void()>>(hook.ptr());
             auto grad_node = self.MutableGradVarBase()->GradNode();
             for (auto &cur_op : *grad_node) {
               cur_op.AddVoidFunctionPostHook(
                   std::make_shared<std::function<void()>>(py_func));
             }
           })
1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713
      .def("_register_backward_hook",
           [](imperative::VarBase &self, const py::handle &hook) {
             PADDLE_ENFORCE_EQ(
                 self.IsLeaf(), true,
                 platform::errors::InvalidArgument(
                     "Only can register backward hook for leaf Tensor."));
             PADDLE_ENFORCE_EQ(
                 !self.OverridedStopGradient() && self.HasGradVar(), true,
                 platform::errors::InvalidArgument(
                     "Cannot register backward hook on a Tensor that stop "
                     "gradient or without gradient."));
             auto py_func = PyObjectCast<std::function<void()>>(hook.ptr());
             self.GradVarBase()->AddVoidHook(
                 std::make_shared<std::function<void()>>(py_func));
           },
           R"DOC(
             Registers a backward hook for current Tensor.

             This hook will be called every time the gradient of current Tensor has been fully calculated.

             There are two differences with `_register_grad_hook`:
             1. This backward hook will be executed after the gradient accumulation completed across batchs,
                but the hook registered by `_register_grad_hook` will be executed the gradient accumulation
                completed in current batch.
             2. This backward hook function should have the following signature:

                  hook() -> None

                It requires no input and no return value.

             Args:
                 hook(function): A backward hook to be registered for Tensor.gradient

             Returns:
                 None
           )DOC")
1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741
      .def("cpu",
           [](const std::shared_ptr<imperative::VarBase> &self) {
             if (platform::is_cpu_place(self->Place())) {
               return self;
             } else {
               auto new_var = self->NewVarBase(platform::CPUPlace(), true);
               new_var->SetOverridedStopGradient(self->OverridedStopGradient());
               return new_var;
             }
           },
           R"DOC(
        Returns a copy of this Tensor in CPU memory.

        If this Tensor is already in CPU memory, then no copy is performed and the original Tensor is returned.

        Examples:
            .. code-block:: python

              import paddle
              x = paddle.to_tensor(1.0, place=paddle.CUDAPlace(0))
              print(x.place)    # CUDAPlace(0)
              
              y = x.cpu()
              print(y.place)    # CPUPlace

              )DOC")
      .def("pin_memory",
           [](const std::shared_ptr<imperative::VarBase> &self) {
1742
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773
             PADDLE_THROW(platform::errors::PermissionDenied(
                 "Cannot copy this Tensor to pinned memory in CPU version "
                 "Paddle, "
                 "Please recompile or reinstall Paddle with CUDA support."));
#endif
             if (platform::is_cuda_pinned_place(self->Place())) {
               return self;
             } else {
               auto new_var =
                   self->NewVarBase(platform::CUDAPinnedPlace(), true);
               new_var->SetOverridedStopGradient(self->OverridedStopGradient());
               return new_var;
             }
           },
           R"DOC(
        Returns a copy of this Tensor in pin memory.

        If this Tensor is already in pin memory, then no copy is performed and the original Tensor is returned.

        Examples:
            .. code-block:: python

              import paddle
              x = paddle.to_tensor(1.0, place=paddle.CUDAPlace(0))
              print(x.place)      # CUDAPlace(0)

              y = x.pin_memory()
              print(y.place)      # CUDAPinnedPlace

      )DOC")
      .def("cuda",
1774 1775
           [](const std::shared_ptr<imperative::VarBase> &self,
              py::handle &handle, bool blocking) {
1776
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1777 1778 1779 1780
             PADDLE_THROW(platform::errors::PermissionDenied(
                 "Cannot copy this Tensor to GPU in CPU version Paddle, "
                 "Please recompile or reinstall Paddle with CUDA support."));
#else
1781
             int device_count = platform::GetGPUDeviceCount();
1782 1783
             int device_id = 0;
             if (handle == py::none()) {
1784 1785 1786
               if (platform::is_gpu_place(self->Place())) {
                 return self;
               }
1787 1788 1789 1790 1791 1792 1793
             } else {
               PyObject *py_obj = handle.ptr();
               PADDLE_ENFORCE_EQ(
                   PyCheckInteger(py_obj), true,
                   platform::errors::InvalidArgument(
                       " 'device_id' must be a positive integer"));
               device_id = py::cast<int>(handle);
1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816
             }
             PADDLE_ENFORCE_GE(
                 device_id, 0,
                 platform::errors::InvalidArgument(
                     "Can not copy Tensor to Invalid CUDAPlace(%d), device id "
                     "must inside [0, %d)",
                     device_id, device_count));
             PADDLE_ENFORCE_LT(
                 device_id, device_count,
                 platform::errors::InvalidArgument(
                     "Can not copy Tensor to Invalid CUDAPlace(%d), device id "
                     "must inside [0, %d)",
                     device_id, device_count));
             platform::CUDAPlace place = platform::CUDAPlace(device_id);
             if (platform::is_same_place(self->Place(), place)) {
               return self;
             } else {
               auto new_var = self->NewVarBase(place, blocking);
               new_var->SetOverridedStopGradient(self->OverridedStopGradient());
               return new_var;
             }
#endif
           },
1817
           py::arg("device_id") = py::none(), py::arg("blocking") = true, R"DOC(
1818 1819 1820 1821 1822 1823
        Returns a copy of this Tensor in GPU memory.

        If this Tensor is already in GPU memory and device_id is default, 
        then no copy is performed and the original Tensor is returned.
        
        Args:
1824
            device_id(int, optional): The destination GPU device id. Default: None, means current device.
1825 1826 1827 1828 1829 1830
            blocking(bool, optional): If False and the source is in pinned memory, the copy will be 
              asynchronous with respect to the host. Otherwise, the argument has no effect. Default: False.

        Examples:
            .. code-block:: python

1831
              # required: gpu
1832 1833 1834 1835 1836 1837
              import paddle
              x = paddle.to_tensor(1.0, place=paddle.CPUPlace())
              print(x.place)        # CPUPlace

              y = x.cuda()
              print(y.place)        # CUDAPlace(0)
1838 1839 1840
            
              y = x.cuda(None)
              print(y.place)        # CUDAPlace(0)
1841 1842 1843 1844

              y = x.cuda(1)
              print(y.place)        # CUDAPlace(1)
       )DOC")
K
Kaipeng Deng 已提交
1845 1846 1847 1848 1849 1850 1851 1852 1853 1854
      .def("_share_memory",
           [](const std::shared_ptr<imperative::VarBase> &self) {
#ifndef _WIN32
             PADDLE_ENFORCE_EQ(
                 platform::is_cpu_place(self->Place()), true,
                 platform::errors::InvalidArgument(
                     "Sharing memory only support CPU Tensor currently"));
             // 1. get LoDTensor
             auto *t = self->MutableVar()->GetMutable<framework::LoDTensor>();
             // 2. allocate shared memory
1855
             void *data_ptr = t->data();
K
Kaipeng Deng 已提交
1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873
             size_t data_size = t->numel() * framework::SizeOfType(t->type());
             auto shared_writer_holder =
                 memory::allocation::AllocateMemoryMapWriterAllocation(
                     data_size);
             // 3. maintain mmap fd set & backup ipc_name
             const std::string &ipc_name = shared_writer_holder->ipc_name();
             memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);
             // 4. copy data & reset holder
             memory::Copy(platform::CPUPlace(), shared_writer_holder->ptr(),
                          platform::CPUPlace(), data_ptr, data_size);
             t->ResetHolder(shared_writer_holder);
             return *t;
#else
             PADDLE_THROW(platform::errors::PermissionDenied(
                 "Sharing memory in Windows OS is not supported currently"));
#endif
           },
           py::return_value_policy::reference)
1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928
#if defined(PADDLE_WITH_CUDA)
      .def("_uva",
           [](const std::shared_ptr<imperative::VarBase> &self, int device_id) {
             PADDLE_ENFORCE_EQ(platform::is_cpu_place(self->Place()), true,
                               platform::errors::InvalidArgument(
                                   "Unified virtual addressing only support "
                                   "CPU Tensor currently."));
             platform::DeviceContextPool &pool =
                 platform::DeviceContextPool::Instance();
             auto *dev_ctx = pool.Get(platform::CUDAPlace(device_id));
             VLOG(4) << "Init the DeviceContext, and the place is "
                     << dev_ctx->GetPlace();
             auto *self_tensor =
                 self->MutableVar()->GetMutable<framework::LoDTensor>();
             // Register the cpu memory as the cuda host memory
             const auto &data_numel = self_tensor->numel();
             const size_t &need_allocate_size =
                 data_numel * framework::SizeOfType(self_tensor->type());
             void *data_ptr = self_tensor->data();
             auto result = cudaHostRegister(data_ptr, need_allocate_size,
                                            cudaHostRegisterDefault);
             if (cudaSuccess != result) {
               VLOG(4) << "UVA(unified virtual addressing) failed allocate:"
                       << need_allocate_size << ", the error code:" << result;
             }

             // Get device pointer from the function of cudaHostGetDevicePointer
             void *cuda_device_pointer = nullptr;
             cudaHostGetDevicePointer(
                 reinterpret_cast<void **>(&cuda_device_pointer),
                 reinterpret_cast<void *>(data_ptr), 0);

             // Reset the memory with device pointer
             std::shared_ptr<memory::allocation::Allocation> holder =
                 std::make_shared<memory::allocation::Allocation>(
                     cuda_device_pointer, need_allocate_size,
                     platform::CUDAPlace(device_id));
             self_tensor->ResetHolderWithType(holder, self_tensor->type());
           },
           py::arg("device_id") = 0, py::return_value_policy::reference, R"DOC(
        Returns self tensor with the UVA(unified virtual addressing).

        Args:
            device_id(int, optional): The destination GPU device id. Default: None, means current device.

        Examples:
            .. code-block:: python

              # required: gpu
              import paddle
              x = paddle.to_tensor([1, 2, 3], place=paddle.CPUPlace())
              x._uva()
              print(x)
       )DOC")
#endif
1929
      .def("copy_", &imperative::VarBase::CopyFrom)
1930
      .def("_copy_to",
1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946
           [](const std::shared_ptr<imperative::VarBase> &self,
              const platform::CPUPlace &place, bool blocking) {
             auto new_var = self->NewVarBase(place, blocking);
             // Note(zhiqiu): Since NewVarBase may use GpuCopyAsync to
             // copy data from the tensor of self to the tensor of new varbase,
             // we need to ensure that the varbase self is not destructed until
             // the GpuCopyAsync is completed. Otherwise, the memory may be
             // freed
             // when varbase self is destructed.
             // To do that, we increase the reference count of self by 1 and
             // add a cuda event to wait the GpuCopyAsync's completion.
             if (!blocking) {
               IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
             }
             return new_var;
           },
J
Jiabin Yang 已提交
1947
           py::return_value_policy::copy)
1948
      .def("_copy_to",
1949 1950 1951 1952 1953 1954 1955 1956
           [](const std::shared_ptr<imperative::VarBase> &self,
              const platform::CUDAPinnedPlace &place, bool blocking) {
             auto new_var = self->NewVarBase(place, blocking);
             if (!blocking) {
               IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
             }
             return new_var;
           },
1957
           py::return_value_policy::copy)
1958
      .def("_copy_to",
1959 1960 1961 1962 1963 1964 1965 1966
           [](const std::shared_ptr<imperative::VarBase> &self,
              const platform::XPUPlace &place, bool blocking) {
             auto new_var = self->NewVarBase(place, blocking);
             if (!blocking) {
               IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
             }
             return new_var;
           },
1967
           py::return_value_policy::copy)
1968
      .def("_copy_to",
1969 1970 1971 1972 1973 1974 1975 1976
           [](const std::shared_ptr<imperative::VarBase> &self,
              const platform::CUDAPlace &place, bool blocking) {
             auto new_var = self->NewVarBase(place, blocking);
             if (!blocking) {
               IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
             }
             return new_var;
           },
J
Jiabin Yang 已提交
1977
           py::return_value_policy::copy)
1978 1979 1980 1981 1982 1983 1984 1985 1986 1987
      .def("_copy_to",
           [](const std::shared_ptr<imperative::VarBase> &self,
              const platform::NPUPlace &place, bool blocking) {
             auto new_var = self->NewVarBase(place, blocking);
             if (!blocking) {
               IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
             }
             return new_var;
           },
           py::return_value_policy::copy)
F
fwenguang 已提交
1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
      .def("_copy_to",
           [](const std::shared_ptr<imperative::VarBase> &self,
              const platform::MLUPlace &place, bool blocking) {
             auto new_var = self->NewVarBase(place, blocking);
             if (!blocking) {
               IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
             }
             return new_var;
           },
           py::return_value_policy::copy)
C
chentianyu03 已提交
1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
      .def("_copy_to",
           [](const std::shared_ptr<imperative::VarBase> &self,
              const platform::Place &place, bool blocking) {
             auto new_var = self->NewVarBase(place, blocking);
             if (!blocking) {
               IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
             }
             return new_var;
           },
           py::return_value_policy::copy)
J
Jiabin Yang 已提交
2008
      .def("value", [](imperative::VarBase &self) { return self.MutableVar(); },
2009
           py::return_value_policy::reference)
2010 2011 2012
      .def("_clear",
           [](const std::shared_ptr<imperative::VarBase> &self) {
             auto *t = self->MutableVar()->GetMutable<framework::LoDTensor>();
2013 2014 2015 2016
             PADDLE_ENFORCE_EQ(
                 t->IsInitialized(), true,
                 platform::errors::InvalidArgument(
                     "Tensor %s has not been initialized!", self->Name()));
2017 2018 2019 2020 2021
             t->clear();
           })
      .def("_offset",
           [](const std::shared_ptr<imperative::VarBase> &self) {
             auto *t = self->MutableVar()->GetMutable<framework::LoDTensor>();
2022 2023 2024 2025
             PADDLE_ENFORCE_EQ(
                 t->IsInitialized(), true,
                 platform::errors::InvalidArgument(
                     "Tensor %s has not been initialized!", self->Name()));
2026 2027
             return t->offset();
           })
2028
      .def("_share_buffer_to",
2029
           [](const std::shared_ptr<imperative::VarBase> &self,
2030 2031 2032 2033 2034 2035 2036 2037
              std::shared_ptr<imperative::VarBase> &dst) {
             auto *src = self->MutableVar()->GetMutable<framework::LoDTensor>();
             auto *dst_ = dst->MutableVar()->GetMutable<framework::LoDTensor>();
             PADDLE_ENFORCE_EQ(
                 src->IsInitialized(), true,
                 platform::errors::InvalidArgument(
                     "Tensor %s has not been initialized!", self->Name()));
             dst_->ShareBufferWith(*src);
B
Baibaifan 已提交
2038
             dst_->ShareDataTypeWith(*src);
2039 2040 2041
           })
      .def("_is_shared_buffer_with",
           [](const std::shared_ptr<imperative::VarBase> &self,
2042 2043 2044 2045 2046 2047 2048
              std::shared_ptr<imperative::VarBase> &dst) {
             auto *src = self->MutableVar()->GetMutable<framework::LoDTensor>();
             auto *dst_ = dst->MutableVar()->GetMutable<framework::LoDTensor>();
             if (!src->IsInitialized() || !dst_->IsInitialized()) {
               return false;
             }
             return dst_->IsSharedBufferWith(*src);
2049
           })
2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072
      .def("_share_underline_tensor_to",
           [](const std::shared_ptr<imperative::VarBase> &self,
              std::shared_ptr<imperative::VarBase> &dst) {
             auto *src = self->MutableVar()->GetMutable<framework::LoDTensor>();
             auto *dst_ = dst->MutableVar()->GetMutable<framework::LoDTensor>();
             PADDLE_ENFORCE_EQ(
                 src->IsInitialized(), true,
                 platform::errors::InvalidArgument(
                     "Tensor %s has not been initialized!", self->Name()));
             dst_->ShareBufferWith(*src);
             dst_->ShareDataTypeWith(*src);
             dst_->Resize(src->dims());
           })
      .def("_is_shared_underline_tensor_with",
           [](const std::shared_ptr<imperative::VarBase> &self,
              std::shared_ptr<imperative::VarBase> &dst) {
             auto *src = self->MutableVar()->GetMutable<framework::LoDTensor>();
             auto *dst_ = dst->MutableVar()->GetMutable<framework::LoDTensor>();
             if (!src->IsInitialized() || !dst_->IsInitialized()) {
               return false;
             }
             return dst_->IsSharedBufferWith(*src);
           })
2073 2074 2075 2076
      .def("_slice",
           [](const std::shared_ptr<imperative::VarBase> &self,
              int64_t begin_idx, int64_t end_idx) {
             auto *t = self->MutableVar()->GetMutable<framework::LoDTensor>();
2077 2078 2079 2080
             PADDLE_ENFORCE_EQ(
                 t->IsInitialized(), true,
                 platform::errors::InvalidArgument(
                     "Tensor %s has not been initialized!", self->Name()));
2081 2082 2083 2084 2085 2086 2087 2088 2089 2090
             return t->Slice(begin_idx, end_idx);
           })
      .def("_copy_gradient_from",
           [](std::shared_ptr<imperative::VarBase> &self,
              const imperative::VarBase &src) { self->_CopyGradientFrom(src); })
      .def("_numel",
           [](std::shared_ptr<imperative::VarBase> &self) {
             auto *t = self->MutableVar()->GetMutable<framework::LoDTensor>();
             return t->numel();
           })
2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113
      .def("element_size", &imperative::VarBase::ElementSize, R"DOC(
        Returns the size in bytes of an element in the Tensor.
        
        Examples:
          .. code-block:: python

            import paddle

            x = paddle.to_tensor(1, dtype='bool')
            x.element_size() # 1

            x = paddle.to_tensor(1, dtype='float16')
            x.element_size() # 2

            x = paddle.to_tensor(1, dtype='float32')
            x.element_size() # 4

            x = paddle.to_tensor(1, dtype='float64')
            x.element_size() # 8

            x = paddle.to_tensor(1, dtype='complex128')
            x.element_size() # 16
       )DOC")
2114 2115
      .def_property("name", &imperative::VarBase::Name,
                    &imperative::VarBase::SetName)
L
Leo Chen 已提交
2116 2117 2118 2119 2120
      .def_property("stop_gradient",
                    &imperative::VarBase::OverridedStopGradient,
                    &imperative::VarBase::SetOverridedStopGradient)
      .def_property("persistable", &imperative::VarBase::Persistable,
                    &imperative::VarBase::SetPersistable)
2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154
      .def_property_readonly("shape",
                             [](imperative::VarBase &self) {
                               if (self.Var().IsType<framework::LoDTensor>()) {
                                 return framework::vectorize<int>(
                                     self.Var()
                                         .Get<framework::LoDTensor>()
                                         .dims());
                               } else if (self.Var()
                                              .IsType<
                                                  framework::SelectedRows>()) {
                                 return framework::vectorize<int>(
                                     self.Var()
                                         .Get<framework::SelectedRows>()
                                         .value()
                                         .dims());
                               } else if (self.Var()
                                              .IsType<framework::Strings>()) {
                                 return std::vector<int>{static_cast<int>(
                                     self.Var()
                                         .Get<framework::Strings>()
                                         .size())};
                               } else if (self.Var()
                                              .IsType<framework::Vocab>()) {
                                 return std::vector<int>{static_cast<int>(
                                     self.Var()
                                         .Get<framework::Vocab>()
                                         .size())};
                               } else {
                                 VLOG(2) << "It is meaningless to get shape of "
                                            "variable type "
                                         << GetTypeName(self);
                                 return std::vector<int>();
                               }
                             })
2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183
      .def_property_readonly("is_leaf", &imperative::VarBase::IsLeaf,
                             R"DOC(
      Whether a Tensor is leaf Tensor.

      For the Tensor whose stop_gradient is ``True`` , it will be leaf Tensor. 
      
      For the Tensor whose stop_gradient is ``False`` , it will be leaf Tensor too if it is created by user.

      Returns:
          bool: Whether a Tensor is leaf Tensor.

      Examples:
          .. code-block:: python

              import paddle

              x = paddle.to_tensor(1.)
              print(x.is_leaf) # True

              x = paddle.to_tensor(1., stop_gradient=True)
              y = x + 1
              print(x.is_leaf) # True
              print(y.is_leaf) # True

              x = paddle.to_tensor(1., stop_gradient=False)
              y = x + 1
              print(x.is_leaf) # True
              print(y.is_leaf) # False
       )DOC")
2184 2185 2186
      .def_property_readonly(
          "place", [](imperative::VarBase &self) { return self.Place(); },
          py::return_value_policy::copy)
2187 2188 2189 2190 2191 2192
      .def_property_readonly("_place_str",
                             [](imperative::VarBase &self) {
                               std::stringstream ostr;
                               ostr << self.Place();
                               return ostr.str();
                             })
J
Jiabin Yang 已提交
2193
      .def_property_readonly("type", &imperative::VarBase::Type)
L
Leo Chen 已提交
2194
      .def_property_readonly("dtype", &imperative::VarBase::DataType);
2195

2196 2197 2198 2199 2200
  py::class_<imperative::jit::ProgramDescTracer>(m, "ProgramDescTracer", "")
      .def("create_program_desc",
           &imperative::jit::ProgramDescTracer::CreateProgramDesc)
      .def("reset", &imperative::jit::ProgramDescTracer::Reset);

L
Leo Chen 已提交
2201 2202 2203 2204 2205 2206 2207
  py::enum_<paddle::imperative::AmpLevel>(m, "AmpLevel", py::arithmetic())
      .value("O0", paddle::imperative::AmpLevel::O0)
      .value("O1", paddle::imperative::AmpLevel::O1)
      .value("O2", paddle::imperative::AmpLevel::O2)
      .value("O3", paddle::imperative::AmpLevel::O3)
      .export_values();

2208
  py::class_<imperative::Tracer, std::shared_ptr<imperative::Tracer>>(
2209
      m, "Tracer", R"DOC()DOC")
2210
      .def("__init__",
J
Jiabin Yang 已提交
2211
           [](imperative::Tracer &self) { new (&self) imperative::Tracer(); })
2212 2213 2214
      .def_property("_enable_program_desc_tracing",
                    &imperative::Tracer::IsProgramDescTracingEnabled,
                    &imperative::Tracer::SetEnableProgramDescTracing)
L
Leo Chen 已提交
2215 2216
      .def_property("_amp_level", &imperative::Tracer::GetAmpLevel,
                    &imperative::Tracer::SetAmpLevel)
2217
      .def_property("_has_grad", &imperative::Tracer::HasGrad,
2218
                    &imperative::Tracer::SetHasGrad)
2219 2220 2221 2222 2223 2224 2225 2226
      .def_property(
          "_expected_place",
          [](const imperative::Tracer &self) -> py::object {
            return py::cast(self.ExpectedPlace());
          },
          [](imperative::Tracer &self, const py::object &obj) {
            if (py::isinstance<platform::CUDAPlace>(obj)) {
              auto p = obj.cast<platform::CUDAPlace *>();
L
Leo Chen 已提交
2227
              self.SetExpectedPlace(*p);
2228 2229
              // TODO(jiabin): Support eager here when we need to make all
              // dygraph in eager mode
2230 2231
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
2232 2233 2234
            } else if (py::isinstance<platform::XPUPlace>(obj)) {
              auto p = obj.cast<platform::XPUPlace *>();
              self.SetExpectedPlace(*p);
2235 2236
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
2237 2238
            } else if (py::isinstance<platform::CPUPlace>(obj)) {
              auto p = obj.cast<platform::CPUPlace *>();
L
Leo Chen 已提交
2239
              self.SetExpectedPlace(*p);
2240 2241
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
2242 2243
            } else if (py::isinstance<platform::CUDAPinnedPlace>(obj)) {
              auto p = obj.cast<platform::CUDAPinnedPlace *>();
L
Leo Chen 已提交
2244
              self.SetExpectedPlace(*p);
2245 2246
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
2247 2248 2249 2250 2251
            } else if (py::isinstance<platform::NPUPlace>(obj)) {
              auto p = obj.cast<platform::NPUPlace *>();
              self.SetExpectedPlace(*p);
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
F
fwenguang 已提交
2252 2253 2254 2255 2256
            } else if (py::isinstance<platform::MLUPlace>(obj)) {
              auto p = obj.cast<platform::MLUPlace *>();
              self.SetExpectedPlace(*p);
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
2257 2258 2259 2260 2261
            } else if (py::isinstance<platform::Place>(obj)) {
              auto p = obj.cast<platform::Place *>();
              self.SetExpectedPlace(*p);
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
2262
            } else {
L
Leo Chen 已提交
2263
              PADDLE_THROW(platform::errors::InvalidArgument(
2264
                  "Incompatible Place Type: supports XPUPlace, CUDAPlace, "
F
fwenguang 已提交
2265
                  "CPUPlace, NPUPlace, MLUPlace"
L
Leo Chen 已提交
2266 2267
                  "and CUDAPinnedPlace, "
                  "but got Unknown Type!"));
2268 2269
            }
          })
2270 2271 2272
      .def("_get_program_desc_tracer",
           &imperative::Tracer::GetProgramDescTracer,
           py::return_value_policy::reference)
2273
      .def("_generate_unique_name", &imperative::Tracer::GenerateUniqueName,
2274
           py::arg("key") = "dygraph_tmp")
2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290
      .def("_set_amp_op_list",
           [](imperative::Tracer &self,
              std::unordered_set<std::string> &allow_ops,
              std::unordered_set<std::string> &block_ops) {
             // NOTE(zhiqiu): The automatic conversion in pybind11 between
             // c++
             // STL and python set/list/dict involve a copy operation that
             // prevents pass-by-reference semantics, so it is ok to swap.
             // The reaseon why not directly pass
             // std::shared_ptr<std::unordered_set<std::string>>
             // is that pybind11 forbid shared_ptr<T> where T is not custom
             // type.
             imperative::AmpOperators::Instance().GetMutableAllowOps()->swap(
                 allow_ops);
             imperative::AmpOperators::Instance().GetMutableBlockOps()->swap(
                 block_ops);
2291
             VLOG(5) << "AMP operators changed, "
2292 2293
                     << imperative::AmpOperators::Instance();
           })
2294 2295 2296
      .def("_get_amp_op_list",
           [](imperative::Tracer &self) {
             return std::make_tuple(
2297 2298
                 *(imperative::AmpOperators::Instance().GetMutableAllowOps()),
                 *(imperative::AmpOperators::Instance().GetMutableBlockOps()));
2299
           })
2300 2301 2302 2303
      .def("trace",
           [](imperative::Tracer &self, const std::string &type,
              const PyNameVarBaseMap &ins, const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs, const platform::XPUPlace &place,
Z
zyfncg 已提交
2304 2305
              bool trace_backward,
              const std::map<std::string, std::string> &inplace_map = {}) {
2306 2307 2308 2309 2310
             auto ins_map = ConvertToNameVarBaseMap(ins);
             auto outs_map = ConvertToNameVarBaseMap(outs);
             {
               py::gil_scoped_release release;
               self.TraceOp(type, std::move(ins_map), std::move(outs_map),
Z
zyfncg 已提交
2311 2312
                            std::move(attrs), place, trace_backward,
                            inplace_map);
2313 2314
             }
           })
M
minqiyang 已提交
2315
      .def("trace",
J
Jiabin Yang 已提交
2316 2317 2318
           [](imperative::Tracer &self, const std::string &type,
              const PyNameVarBaseMap &ins, const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs, const platform::CUDAPlace &place,
Z
zyfncg 已提交
2319 2320
              bool trace_backward,
              const std::map<std::string, std::string> &inplace_map = {}) {
J
Jiabin Yang 已提交
2321 2322
             auto ins_map = ConvertToNameVarBaseMap(ins);
             auto outs_map = ConvertToNameVarBaseMap(outs);
2323 2324
             {
               py::gil_scoped_release release;
J
Jiabin Yang 已提交
2325
               self.TraceOp(type, std::move(ins_map), std::move(outs_map),
Z
zyfncg 已提交
2326 2327
                            std::move(attrs), place, trace_backward,
                            inplace_map);
2328
             }
M
minqiyang 已提交
2329
           })
2330 2331 2332 2333
      .def("trace",
           [](imperative::Tracer &self, const std::string &type,
              const PyNameVarBaseMap &ins, const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs, const platform::NPUPlace &place,
Z
zyfncg 已提交
2334 2335
              bool trace_backward,
              const std::map<std::string, std::string> &inplace_map = {}) {
2336 2337 2338 2339 2340
             auto ins_map = ConvertToNameVarBaseMap(ins);
             auto outs_map = ConvertToNameVarBaseMap(outs);
             {
               py::gil_scoped_release release;
               self.TraceOp(type, std::move(ins_map), std::move(outs_map),
Z
zyfncg 已提交
2341 2342
                            std::move(attrs), place, trace_backward,
                            inplace_map);
2343 2344
             }
           })
F
fwenguang 已提交
2345 2346 2347 2348
      .def("trace",
           [](imperative::Tracer &self, const std::string &type,
              const PyNameVarBaseMap &ins, const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs, const platform::MLUPlace &place,
Z
zyfncg 已提交
2349 2350
              bool trace_backward,
              const std::map<std::string, std::string> &inplace_map = {}) {
F
fwenguang 已提交
2351 2352 2353 2354 2355
             auto ins_map = ConvertToNameVarBaseMap(ins);
             auto outs_map = ConvertToNameVarBaseMap(outs);
             {
               py::gil_scoped_release release;
               self.TraceOp(type, std::move(ins_map), std::move(outs_map),
Z
zyfncg 已提交
2356 2357
                            std::move(attrs), place, trace_backward,
                            inplace_map);
F
fwenguang 已提交
2358 2359
             }
           })
J
Jiabin Yang 已提交
2360 2361 2362 2363
      .def("trace",
           [](imperative::Tracer &self, const std::string &type,
              const PyNameVarBaseMap &ins, const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs, const platform::CPUPlace &place,
Z
zyfncg 已提交
2364 2365
              bool trace_backward,
              const std::map<std::string, std::string> &inplace_map = {}) {
J
Jiabin Yang 已提交
2366 2367 2368 2369 2370
             auto ins_map = ConvertToNameVarBaseMap(ins);
             auto outs_map = ConvertToNameVarBaseMap(outs);
             {
               py::gil_scoped_release release;
               self.TraceOp(type, std::move(ins_map), std::move(outs_map),
Z
zyfncg 已提交
2371 2372
                            std::move(attrs), place, trace_backward,
                            inplace_map);
J
Jiabin Yang 已提交
2373 2374
             }
           });
2375 2376

  // define parallel context
2377 2378 2379
  py::class_<imperative::ParallelStrategy> parallel_strategy(
      m, "ParallelStrategy", "");
  parallel_strategy.def(py::init())
2380 2381
      .def_property(
          "nranks",
2382 2383
          [](const imperative::ParallelStrategy &self) { return self.nranks_; },
          [](imperative::ParallelStrategy &self, int nranks) {
2384 2385 2386
            self.nranks_ = nranks;
          })
      .def_property("local_rank",
2387
                    [](const imperative::ParallelStrategy &self) {
2388 2389
                      return self.local_rank_;
                    },
2390
                    [](imperative::ParallelStrategy &self, int local_rank) {
2391 2392 2393 2394
                      self.local_rank_ = local_rank;
                    })
      .def_property(
          "trainer_endpoints",
2395
          [](const imperative::ParallelStrategy &self) {
2396 2397
            return self.trainer_endpoints_;
          },
2398
          [](imperative::ParallelStrategy &self, std::vector<std::string> eps) {
2399 2400 2401
            self.trainer_endpoints_ = eps;
          })
      .def_property("current_endpoint",
2402
                    [](const imperative::ParallelStrategy &self) {
2403 2404
                      return self.current_endpoint_;
                    },
2405
                    [](imperative::ParallelStrategy &self,
2406 2407 2408 2409 2410 2411 2412
                       const std::string &ep) { self.current_endpoint_ = ep; })
      .def_property(
          "nrings",
          [](const imperative::ParallelStrategy &self) { return self.nrings_; },
          [](imperative::ParallelStrategy &self, int nrings) {
            self.nrings_ = nrings;
          });
2413

2414 2415 2416 2417
  m.def("varbase_copy", &VarBaseCopy<platform::Place>);
  m.def("varbase_copy", &VarBaseCopy<platform::CPUPlace>);
  m.def("varbase_copy", &VarBaseCopy<platform::CUDAPlace>);
  m.def("varbase_copy", &VarBaseCopy<platform::XPUPlace>);
2418
  m.def("varbase_copy", &VarBaseCopy<platform::CUDAPinnedPlace>);
2419
  m.def("varbase_copy", &VarBaseCopy<platform::NPUPlace>);
F
fwenguang 已提交
2420
  m.def("varbase_copy", &VarBaseCopy<platform::MLUPlace>);
2421

2422 2423 2424 2425 2426 2427 2428
  m.def(
      "dygraph_partial_grad",
      [](const std::vector<std::shared_ptr<imperative::VarBase>> &input_targets,
         const std::vector<std::shared_ptr<imperative::VarBase>>
             &output_targets,
         const std::vector<std::shared_ptr<imperative::VarBase>> &output_grads,
         const std::vector<std::shared_ptr<imperative::VarBase>> &no_grad_vars,
2429 2430
         const platform::Place &place, bool create_graph, bool retain_graph,
         bool allow_unused, bool only_inputs) {
Z
Zeng Jinle 已提交
2431 2432
        imperative::PartialGradEngine engine(
            input_targets, output_targets, output_grads, no_grad_vars, place,
2433
            create_graph, retain_graph, allow_unused, only_inputs);
2434 2435 2436 2437 2438
        engine.Execute();
        return engine.GetResult();
      },
      py::call_guard<py::gil_scoped_release>());

2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451
  m.def(
      "dygraph_run_backward",
      [](const std::vector<std::shared_ptr<imperative::VarBase>> &tensors,
         const std::vector<std::shared_ptr<imperative::VarBase>> &grad_tensors,
         bool retain_graph, const imperative::Tracer &tracer) {
        auto *engine = tracer.GetEngine();
        engine->Init(tensors, grad_tensors, retain_graph);
        VLOG(3) << "Start backward";
        engine->Execute();
        VLOG(3) << "Finish backward";
      },
      py::call_guard<py::gil_scoped_release>());

2452
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL) || \
2453
    defined(PADDLE_WITH_XPU_BKCL) || defined(PADDLE_WITH_GLOO)
2454 2455 2456 2457 2458 2459
  py::class_<imperative::ParallelContext,
             std::shared_ptr<imperative::ParallelContext>>(m,
                                                           "ParallelContext");

  py::class_<imperative::Reducer, std::shared_ptr<imperative::Reducer>>(
      m, "Reducer", R"DOC()DOC")
S
ShenLiang 已提交
2460 2461 2462 2463 2464
      .def(py::init<const std::vector<std::shared_ptr<imperative::VarBase>> &,
                    const std::vector<std::vector<size_t>> &,
                    const std::vector<bool> &,
                    std::shared_ptr<imperative::ParallelContext>,
                    const std::vector<size_t> &, bool>())
2465
      .def("prepare_for_backward", &imperative::Reducer::PrepareForBackward,
2466
           py::arg("vars"), py::call_guard<py::gil_scoped_release>());
2467 2468 2469 2470

  m.def("assign_group_by_size", &imperative::AssignGroupBySize, py::arg("vars"),
        py::arg("is_sparse_gradient"),
        py::arg("group_size_limits") = std::vector<size_t>{25 * 1024 * 1024},
2471
        py::arg("tensor_indices") = std::vector<int64_t>{},
2472
        py::call_guard<py::gil_scoped_release>());
2473
#endif
2474

2475
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
2476 2477 2478 2479 2480
  py::class_<imperative::NCCLParallelContext, imperative::ParallelContext,
             std::shared_ptr<imperative::NCCLParallelContext>>(
      m, "NCCLParallelContext")
      .def(py::init<const imperative::ParallelStrategy &,
                    const platform::CUDAPlace &>())
K
kuizhiqing 已提交
2481 2482 2483 2484
      .def("init", [](imperative::NCCLParallelContext &self) { self.Init(); })
      .def("init_with_ring_id",
           &imperative::NCCLParallelContext::InitWithRingID,
           py::arg("ring_id"));
2485 2486 2487 2488 2489 2490 2491 2492
#endif

#if defined(PADDLE_WITH_XPU_BKCL)
  py::class_<imperative::BKCLParallelContext, imperative::ParallelContext,
             std::shared_ptr<imperative::BKCLParallelContext>>(
      m, "BKCLParallelContext")
      .def(py::init<const imperative::ParallelStrategy &,
                    const platform::XPUPlace &>())
K
kuizhiqing 已提交
2493 2494 2495 2496
      .def("init", [](imperative::BKCLParallelContext &self) { self.Init(); })
      .def("init_with_ring_id",
           &imperative::BKCLParallelContext::InitWithRingID,
           py::arg("ring_id"));
2497
#endif
2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508

#if defined(PADDLE_WITH_GLOO)
  // xiongkun
  py::class_<imperative::GLOOParallelContext, imperative::ParallelContext,
             std::shared_ptr<imperative::GLOOParallelContext>>(
      m, "GLOOParallelContext")
      .def(py::init<const imperative::ParallelStrategy &,
                    const platform::CPUPlace &>())
      .def("init", [](imperative::GLOOParallelContext &self) { self.Init(); })
      .def("init_with_ring_id",
           &imperative::GLOOParallelContext::InitWithRingID,
2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520
           py::arg("ring_id"));
#endif

#if defined(PADDLE_WITH_ASCEND_CL)
  py::class_<imperative::HCCLParallelContext, imperative::ParallelContext,
             std::shared_ptr<imperative::HCCLParallelContext>>(
      m, "HCCLParallelContext")
      .def(py::init<const imperative::ParallelStrategy &,
                    const platform::NPUPlace &>())
      .def("init", [](imperative::HCCLParallelContext &self) { self.Init(); })
      .def("init_with_ring_id",
           &imperative::HCCLParallelContext::InitWithRingID,
2521 2522 2523
           py::arg("ring_id"));
#endif

K
kuizhiqing 已提交
2524 2525 2526 2527 2528 2529 2530 2531 2532
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL) || \
    defined(PADDLE_WITH_XPU_BKCL) || defined(PADDLE_WITH_ASCEND_CL)
  py::class_<imperative::HeterParallelContext, imperative::ParallelContext,
             std::shared_ptr<imperative::HeterParallelContext>>(
      m, "HeterParallelContext")
      .def(py::init<const imperative::ParallelStrategy &, const int &>())
      .def("init", [](imperative::HeterParallelContext &self) { self.Init(); });
#endif

2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555
  m.def("pylayer_apply",
        [](const platform::CPUPlace &place, const py::object &cls,
           const py::args args, const py::kwargs kwargs) {
          return imperative::PyLayerApply(place, cls, args, kwargs);
        });

  m.def("pylayer_apply",
        [](const platform::CUDAPlace &place, const py::object &cls,
           const py::args args, const py::kwargs kwargs) {
          return imperative::PyLayerApply(place, cls, args, kwargs);
        });

  m.def("pylayer_apply",
        [](const platform::XPUPlace &place, const py::object &cls,
           const py::args args, const py::kwargs kwargs) {
          return imperative::PyLayerApply(place, cls, args, kwargs);
        });

  m.def("pylayer_apply",
        [](const platform::CUDAPinnedPlace &place, const py::object &cls,
           const py::args args, const py::kwargs kwargs) {
          return imperative::PyLayerApply(place, cls, args, kwargs);
        });
2556 2557 2558 2559 2560 2561

  m.def("pylayer_apply",
        [](const platform::NPUPlace &place, const py::object &cls,
           const py::args args, const py::kwargs kwargs) {
          return imperative::PyLayerApply(place, cls, args, kwargs);
        });
F
fwenguang 已提交
2562 2563 2564 2565 2566
  m.def("pylayer_apply",
        [](const platform::MLUPlace &place, const py::object &cls,
           const py::args args, const py::kwargs kwargs) {
          return imperative::PyLayerApply(place, cls, args, kwargs);
        });
2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903

#if defined(PADDLE_WITH_CUDA)
  m.def(
      "async_write",
      [](const imperative::VarBase &src, imperative::VarBase &dst,
         const imperative::VarBase &offset, const imperative::VarBase &count) {
        PADDLE_ENFORCE_EQ(
            platform::is_gpu_place(src.Place()), true,
            platform::errors::InvalidArgument(
                "Required `src` device should be CUDAPlace, but received %d. ",
                src.Place()));
        PADDLE_ENFORCE_EQ(
            platform::is_cuda_pinned_place(dst.Place()), true,
            platform::errors::InvalidArgument(
                "Required `dst` device should be CUDAPinnedPlace, "
                "but received %d. ",
                dst.Place()));
        PADDLE_ENFORCE_EQ(
            platform::is_cpu_place(offset.Place()), true,
            platform::errors::InvalidArgument("Required `offset` device should "
                                              "be CPUPlace, but received %d. ",
                                              offset.Place()));
        PADDLE_ENFORCE_EQ(
            platform::is_cpu_place(count.Place()), true,
            platform::errors::InvalidArgument(
                "Required `count` device should be CPUPlace, but received %d. ",
                count.Place()));

        // TODO(daisiming): In future, add index as arguments following
        // async_read.
        auto &src_tensor = src.Var().Get<framework::LoDTensor>();
        auto *dst_tensor = dst.MutableVar()->GetMutable<framework::LoDTensor>();
        auto &offset_tensor = offset.Var().Get<framework::LoDTensor>();
        auto &count_tensor = count.Var().Get<framework::LoDTensor>();
        const auto &deviceId = paddle::platform::GetCurrentDeviceId();

        PADDLE_ENFORCE_EQ(offset_tensor.dims().size(), 1,
                          platform::errors::InvalidArgument(
                              "`offset` tensor should be one-dimensional."));
        PADDLE_ENFORCE_EQ(count_tensor.dims().size(), 1,
                          platform::errors::InvalidArgument(
                              "`count` tensor should be one-dimensional."));
        PADDLE_ENFORCE_EQ(offset_tensor.numel(), count_tensor.numel(),
                          platform::errors::InvalidArgument(
                              "`offset` and `count` tensor size dismatch."));
        PADDLE_ENFORCE_EQ(
            src_tensor.dims().size(), dst_tensor->dims().size(),
            platform::errors::InvalidArgument(
                "`src` and `dst` should have the same tensor shape, "
                "except for the first dimension."));
        for (int i = 1; i < src_tensor.dims().size(); i++) {
          PADDLE_ENFORCE_EQ(
              src_tensor.dims()[i], dst_tensor->dims()[i],
              platform::errors::InvalidArgument(
                  "`src` and `dst` should have the same tensor shape, "
                  "except for the first dimension."));
        }

        auto stream = paddle::platform::stream::get_current_stream(deviceId)
                          ->raw_stream();

        int64_t size = src_tensor.numel() / src_tensor.dims()[0];
        auto *src_data = src_tensor.data<float>();
        auto *dst_data = dst_tensor->mutable_data<float>(dst.Place());
        const int64_t *offset_data = offset_tensor.data<int64_t>();
        const int64_t *count_data = count_tensor.data<int64_t>();
        int64_t src_offset = 0, dst_offset, c;
        for (int64_t i = 0; i < offset_tensor.numel(); i++) {
          dst_offset = offset_data[i], c = count_data[i];
          PADDLE_ENFORCE_LE(src_offset + c, src_tensor.dims()[0],
                            platform::errors::InvalidArgument(
                                "Invalid offset or count index"));
          PADDLE_ENFORCE_LE(dst_offset + c, dst_tensor->dims()[0],
                            platform::errors::InvalidArgument(
                                "Invalid offset or count index"));
          cudaMemcpyAsync(
              dst_data + (dst_offset * size), src_data + (src_offset * size),
              c * size * sizeof(float), cudaMemcpyDeviceToHost, stream);
          src_offset += c;
        }
      },
      R"DOC(
  This api provides a way to write pieces of source tensor to destination tensor 
  inplacely and asynchronously. In which, we use `offset` and `count` to determine 
  where to copy. `offset` means the begin points of the copy pieces of `src`, and 
  `count` means the lengths of the copy pieces of `src`. To be noted, the copy process 
  will run asynchronously from cuda to pin memory. We can simply remember this as 
  "gpu async_write to pin_memory".
  
  Arguments:
  
    src (Tensor): The source tensor, and the data type should be `float32` currently. 
                  Besides, `src` should be placed on CUDAPlace.

    dst (Tensor): The destination tensor, and the data type should be `float32` currently. 
                  Besides, `dst` should be placed on CUDAPinnedPlace. The shape of `dst` 
                  should be the same with `src` except for the first dimension. 

    offset (Tensor): The offset tensor, and the data type should be `int64` currently. 
                     Besides, `offset` should be placed on CPUPlace. The shape of `offset` 
                     should be one-dimensional. 
    
    count (Tensor): The count tensor, and the data type should be `int64` currently. 
                    Besides, `count` should be placed on CPUPlace. The shape of `count` 
                    should be one-dimensinal. 

  Examples:
      .. code-block:: python

          import numpy as np
          import paddle
          from paddle.fluid import core  
          from paddle.device import cuda
          
          if core.is_compiled_with_cuda():
              src = paddle.rand(shape=[100, 50, 50])
              dst = paddle.emtpy(shape=[200, 50, 50]).pin_memory()
              offset = paddle.to_tensor(
                  np.array([0, 60], dtype="int64"), place=paddle.CPUPlace())
              count = paddle.to_tensor(
                  np.array([40, 60], dtype="int64"), place=paddle.CPUPlace())

              stream = cuda.Stream()
              with cuda.stream_guard(stream):
                  core.async_write(src, dst, offset, count)

              offset_a = paddle.gather(dst, paddle.to_tensor(np.arange(0, 40)))
              offset_b = paddle.gather(dst, paddle.to_tensor(np.arange(60, 120)))
              offset_array = paddle.concat([offset_a, offset_b], axis=0)
              print(np.allclose(src.numpy(), offset_array.numpy())) # True
)DOC");

  m.def(
      "async_read",
      [](const imperative::VarBase &src, imperative::VarBase &dst,
         const imperative::VarBase &index, imperative::VarBase &buffer,
         const imperative::VarBase &offset, const imperative::VarBase &count) {
        PADDLE_ENFORCE_EQ(platform::is_cuda_pinned_place(src.Place()), true,
                          platform::errors::InvalidArgument(
                              "Required `src` device should be "
                              "CUDAPinnedPlace, but received %d.",
                              src.Place()));
        PADDLE_ENFORCE_EQ(
            platform::is_gpu_place(dst.Place()), true,
            platform::errors::InvalidArgument(
                "Required `dst` device should be CUDAPlace, but received %d.",
                dst.Place()));
        PADDLE_ENFORCE_EQ(
            platform::is_cpu_place(index.Place()), true,
            platform::errors::InvalidArgument(
                "Required `index` device should be CPUPlace, but received %d.",
                index.Place()));
        PADDLE_ENFORCE_EQ(
            platform::is_cuda_pinned_place(buffer.Place()), true,
            platform::errors::InvalidArgument(
                "Required `buffer` device should be CUDAPinnedPlace, "
                "but received %d.",
                buffer.Place()));
        PADDLE_ENFORCE_EQ(
            platform::is_cpu_place(offset.Place()), true,
            platform::errors::InvalidArgument(
                "Required `offset` device should be CPUPlace, but received %d.",
                offset.Place()));
        PADDLE_ENFORCE_EQ(
            platform::is_cpu_place(count.Place()), true,
            platform::errors::InvalidArgument(
                "Required `count` device should be CPUPlace, but received %d.",
                count.Place()));

        auto &src_tensor = src.Var().Get<framework::LoDTensor>();
        auto *dst_tensor = dst.MutableVar()->GetMutable<framework::LoDTensor>();
        auto &index_tensor = index.Var().Get<framework::LoDTensor>();
        auto *buffer_tensor =
            buffer.MutableVar()->GetMutable<framework::LoDTensor>();
        auto &offset_tensor = offset.Var().Get<framework::LoDTensor>();
        auto &count_tensor = count.Var().Get<framework::LoDTensor>();
        auto *dst_data = dst_tensor->mutable_data<float>(dst.Place());
        const auto &deviceId = paddle::platform::GetCurrentDeviceId();

        PADDLE_ENFORCE_EQ(src_tensor.dims().size(), dst_tensor->dims().size(),
                          platform::errors::InvalidArgument(
                              "`src` and `dst` should have same tensor shape, "
                              "except for the first dimension."));
        PADDLE_ENFORCE_EQ(
            src_tensor.dims().size(), buffer_tensor->dims().size(),
            platform::errors::InvalidArgument(
                "`src` and `buffer` should have same tensor shape, "
                "except for the first dimension."));
        for (int i = 1; i < src_tensor.dims().size(); i++) {
          PADDLE_ENFORCE_EQ(
              src_tensor.dims()[i], dst_tensor->dims()[i],
              platform::errors::InvalidArgument(
                  "`src` and `dst` should have the same tensor shape, "
                  "except for the first dimension."));
          PADDLE_ENFORCE_EQ(
              src_tensor.dims()[i], buffer_tensor->dims()[i],
              platform::errors::InvalidArgument(
                  "`src` and `buffer` should have the same tensor shape, "
                  "except for the first dimension."));
        }
        PADDLE_ENFORCE_EQ(index_tensor.dims().size(), 1,
                          platform::errors::InvalidArgument(
                              "`index` tensor should be one-dimensional."));

        auto stream = paddle::platform::stream::get_current_stream(deviceId)
                          ->raw_stream();

        int64_t numel = 0;  // total copy length
        int64_t copy_flag = offset_tensor.dims()[0];
        int64_t size = src_tensor.numel() / src_tensor.dims()[0];

        if (copy_flag != 0) {
          PADDLE_ENFORCE_EQ(offset_tensor.dims().size(), 1,
                            platform::errors::InvalidArgument(
                                "`offset` tensor should be one-dimensional."));
          PADDLE_ENFORCE_EQ(count_tensor.dims().size(), 1,
                            platform::errors::InvalidArgument(
                                "`count` tensor should be one-dimensional."));
          PADDLE_ENFORCE_EQ(offset_tensor.numel(), count_tensor.numel(),
                            platform::errors::InvalidArgument(
                                "`offset` and `count` tensor size dismatch."));
          auto *offset_data = offset_tensor.data<int64_t>();
          auto *count_data = count_tensor.data<int64_t>();
          for (int64_t i = 0; i < count_tensor.numel(); i++) {
            numel += count_data[i];
          }
          PADDLE_ENFORCE_LE(numel + index_tensor.numel(),
                            buffer_tensor->dims()[0],
                            platform::errors::InvalidArgument(
                                "Buffer tensor size is too small."));
          PADDLE_ENFORCE_LE(numel + index_tensor.numel(), dst_tensor->dims()[0],
                            platform::errors::InvalidArgument(
                                "Target tensor size is too small."));

          int64_t src_offset, dst_offset = 0, c;
          auto *src_data = src_tensor.data<float>();
          for (int64_t i = 0; i < offset_tensor.numel(); i++) {
            src_offset = offset_data[i], c = count_data[i];
            PADDLE_ENFORCE_LE(src_offset + c, src_tensor.dims()[0],
                              platform::errors::InvalidArgument(
                                  "Invalid offset or count index."));
            PADDLE_ENFORCE_LE(dst_offset + c, dst_tensor->dims()[0],
                              platform::errors::InvalidArgument(
                                  "Invalid offset or count index."));
            cudaMemcpyAsync(
                dst_data + (dst_offset * size), src_data + (src_offset * size),
                c * size * sizeof(float), cudaMemcpyHostToDevice, stream);
            dst_offset += c;
          }
        } else {
          PADDLE_ENFORCE_LE(index_tensor.numel(), buffer_tensor->dims()[0],
                            platform::errors::InvalidArgument(
                                "Buffer tensor size is too small."));
        }

        // Select the index data to the buffer
        auto index_select = [](const framework::Tensor &src_tensor,
                               const framework::Tensor &index_tensor,
                               framework::Tensor *buffer_tensor) {
          auto *src_data = src_tensor.data<float>();
          auto *index_data = index_tensor.data<int64_t>();
          auto *buffer_data =
              buffer_tensor->mutable_data<float>(buffer_tensor->place());
          const int &slice_size = src_tensor.numel() / src_tensor.dims()[0];
          const int &copy_bytes = slice_size * sizeof(float);
          int64_t c = 0;
          for (int64_t i = 0; i < index_tensor.numel(); i++) {
            std::memcpy(buffer_data + c * slice_size,
                        src_data + index_data[i] * slice_size, copy_bytes);
            c += 1;
          }
        };
        index_select(src_tensor, index_tensor, buffer_tensor);

        // Copy the data to device memory
        cudaMemcpyAsync(dst_data + (numel * size), buffer_tensor->data<float>(),
                        index_tensor.numel() * size * sizeof(float),
                        cudaMemcpyHostToDevice, stream);
      },
      R"DOC(
  This api provides a way to read from pieces of source tensor to destination tensor 
  asynchronously. In which, we use `index`, `offset` and `count` to determine where 
  to read. `index` means the index position of src tensor we want to read. `offset` 
  and count means the begin points and length of pieces of src tensor we want to read. 
  To be noted, the copy process will run asynchronously from pin memory to cuda place. 
  We can simply remember this as "cuda async_read from pin_memory".

  Arguments:
  
    src (Tensor): The source tensor, and the data type should be `float32` currently. 
                  Besides, `src` should be placed on CUDAPinnedPlace.
  
    dst (Tensor): The destination tensor, and the data type should be `float32` currently. 
                  Besides, `dst` should be placed on CUDAPlace. The shape of `dst` should 
                  be the same with `src` except for the first dimension.

    index (Tensor): The index tensor, and the data type should be `int64` currently. 
                    Besides, `index` should be on CPUplace. The shape of `index` should 
                    be one-dimensional.

    buffer (Tensor): The buffer tensor, used to buffer index copy tensor temporarily. 
                     The data type should be `float32` currently, and should be placed 
                     on CUDAPinnedPlace. The shape of `buffer` should be the same with `src` except for the first dimension.

    offset (Tensor): The offset tensor, and the data type should be `int64` currently. 
                     Besides, `offset` should be placed on CPUPlace. The shape of `offset` 
                     should be one-dimensional.

    count (Tensor): The count tensor, and the data type should be `int64` currently. 
                    Besides, `count` should be placed on CPUPlace. The shape of `count` 
                    should be one-dimensinal.
    
  Examples:
      .. code-block:: python

          import numpy as np
          import paddle
          from paddle.fluid import core
          from paddle.device import cuda

          if core.is_compiled_with_cuda():
              src = paddle.rand(shape=[100, 50, 50], dtype="float32").pin_memory()
              dst = paddle.empty(shape=[100, 50, 50], dtype="float32")
              offset = paddle.to_tensor(
                  np.array([0, 60], dtype="int64"), place=paddle.CPUPlace())
              count = paddle.to_tensor(
                  np.array([40, 60], dtype="int64"), place=paddle.CPUPlace())
              buffer = paddle.empty(shape=[50, 50, 50], dtype="float32").pin_memory()
              index = paddle.to_tensor(
                  np.array([1, 3, 5, 7, 9], dtype="int64")).cpu()
          
              stream = cuda.Stream()
              with cuda.stream_guard(stream):
                  core.async_read(src, dst, index, buffer, offset, count)
 
)DOC");
#endif
2904 2905 2906 2907
}

}  // namespace pybind
}  // namespace paddle