benchmark.cc 18.9 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License. */

#include <iostream>
T
tensor-tang 已提交
16
#include <random>
T
tensor-tang 已提交
17 18 19 20
#include <string>
#include <vector>
#include "gflags/gflags.h"
#include "glog/logging.h"
T
tensor-tang 已提交
21
#include "paddle/fluid/framework/tensor.h"
T
tensor-tang 已提交
22
#include "paddle/fluid/operators/jit/kernels.h"
23
#include "paddle/fluid/platform/device_tracer.h"
24
#include "paddle/fluid/platform/enforce.h"
T
tensor-tang 已提交
25 26
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/port.h"
T
tensor-tang 已提交
27
#include "paddle/fluid/platform/variant.h"  // for UNUSED
T
tensor-tang 已提交
28 29 30 31

DEFINE_int32(burning, 10, "Burning times.");
DEFINE_int32(repeat, 3000, "Repeat times.");
DEFINE_int32(max_size, 1000, "The Max size would be tested.");
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
DEFINE_string(filter, "", "The Benchmark name would be run.");

class BenchJITKernel {
 public:
  BenchJITKernel() = default;
  virtual ~BenchJITKernel() = default;
  virtual void Run() = 0;
  virtual const char* Name() = 0;
  virtual const char* Dtype() = 0;
  virtual const char* Place() = 0;
};

static std::vector<BenchJITKernel*> g_all_benchmarks;

BenchJITKernel* InsertBenchmark(BenchJITKernel* b) {
  g_all_benchmarks.push_back(b);
  return b;
}

#define BENCH_JITKERNEL(name, dtype, place)                                    \
  class BenchJITKernel_##name##_##dtype##_##place##_ : public BenchJITKernel { \
   public:                                                                     \
    const char* Name() override { return #name; }                              \
    const char* Dtype() override { return #dtype; }                            \
    const char* Place() override { return #place; }                            \
    void Run() override;                                                       \
  };                                                                           \
T
tensor-tang 已提交
59
  static auto inserted_##name##_##dtype##_##place##_ UNUSED =                  \
60 61 62 63 64 65 66 67 68 69 70 71 72
      InsertBenchmark(new BenchJITKernel_##name##_##dtype##_##place##_());     \
  void BenchJITKernel_##name##_##dtype##_##place##_::Run()

void RUN_ALL_BENCHMARK() {
  for (auto p : g_all_benchmarks) {
    if (!FLAGS_filter.empty() && FLAGS_filter != p->Name()) {
      continue;
    }
    LOG(INFO) << "Benchmark " << p->Name() << "." << p->Dtype() << "."
              << p->Place();
    p->Run();
  }
}
T
tensor-tang 已提交
73 74 75

template <typename T>
void RandomVec(const int n, T* a, const T lower = static_cast<T>(-20.f),
76 77
               const T upper = static_cast<T>(20.f), unsigned int seed = 100) {
  std::mt19937 rng(seed);
T
tensor-tang 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91
  std::uniform_real_distribution<double> uniform_dist(0, 1);
  for (int i = 0; i < n; ++i) {
    a[i] = static_cast<T>(uniform_dist(rng) * (upper - lower) + lower);
  }
}

std::vector<int> TestSizes() {
  std::vector<int> s;
  for (int i = 1; i <= FLAGS_max_size; ++i) {
    s.push_back(i);
  }
  return s;
}

92
template <typename KernelTuple, typename... Args>
T
tensor-tang 已提交
93 94
struct BenchFunc {
  // return this function avg time
T
tensor-tang 已提交
95
  // TODO(TJ): clear cache every time
96
  double operator()(const typename KernelTuple::func_type tgt, Args... args) {
T
tensor-tang 已提交
97 98 99
    for (int i = 0; i < FLAGS_burning; ++i) {
      tgt(args...);
    }
T
tensor-tang 已提交
100
    auto start = paddle::platform::PosixInNsec() * 1e-3;
T
tensor-tang 已提交
101 102 103
    for (int i = 0; i < FLAGS_repeat; ++i) {
      tgt(args...);
    }
T
tensor-tang 已提交
104
    auto end = paddle::platform::PosixInNsec() * 1e-3;
105
    return static_cast<double>(end - start) / FLAGS_repeat;
T
tensor-tang 已提交
106 107 108 109 110
  }
};

namespace jit = paddle::operators::jit;

111 112 113
template <typename KernelTuple, typename PlaceType, typename... Args>
void BenchAllImpls(const typename KernelTuple::attr_type& attr, Args... args) {
  BenchFunc<KernelTuple, Args...> benchmark;
T
tensor-tang 已提交
114
  std::vector<std::pair<std::string, double>> infos;
115 116 117
  auto funcs = jit::GetAllCandidateFuncsWithTypes<KernelTuple, PlaceType>(attr);
  for (auto f : funcs) {
    infos.push_back(std::make_pair(f.first, benchmark(f.second, args...)));
T
tensor-tang 已提交
118 119 120
  }

  // Test result from Get function
121
  auto tgt = jit::KernelFuncs<KernelTuple, PlaceType>::Cache().At(attr);
T
tensor-tang 已提交
122
  if (!tgt) {
123 124
    PADDLE_THROW(
        paddle::platform::errors::Fatal("Benchmark target can not be empty."));
T
tensor-tang 已提交
125
  }
T
tensor-tang 已提交
126 127 128 129
  infos.push_back(std::make_pair("Target", benchmark(tgt, args...)));

  // print
  std::ostringstream loginfos;
130 131
  loginfos << "Kernel Type " << jit::to_string(KernelTuple::kernel_type) << ": "
           << attr << ": ";
T
tensor-tang 已提交
132 133 134 135
  for (auto pair : infos) {
    loginfos << pair.first << " takes " << pair.second << " us; ";
  }
  LOG(INFO) << loginfos.str();
T
tensor-tang 已提交
136 137
}

T
tensor-tang 已提交
138 139
using Tensor = paddle::framework::Tensor;

140 141 142
template <typename KernelTuple, typename PlaceType>
void BenchKernelXYZN() {
  using T = typename KernelTuple::data_type;
T
tensor-tang 已提交
143
  for (int d : TestSizes()) {
T
tensor-tang 已提交
144 145 146 147 148 149 150 151 152
    Tensor x, y, z;
    x.Resize({d});
    y.Resize({d});
    z.Resize({d});
    T* x_data = x.mutable_data<T>(PlaceType());
    T* y_data = y.mutable_data<T>(PlaceType());
    T* z_data = z.mutable_data<T>(PlaceType());
    RandomVec<T>(d, x_data);
    RandomVec<T>(d, y_data);
153 154
    BenchAllImpls<KernelTuple, PlaceType>(d, x.data<T>(), y.data<T>(), z_data,
                                          d);
T
tensor-tang 已提交
155
    // test inplace
156
    BenchAllImpls<KernelTuple, PlaceType>(d, x.data<T>(), z_data, z_data, d);
T
tensor-tang 已提交
157 158
  }
}
159

160 161 162
template <typename KernelTuple, typename PlaceType>
void BenchKernelAXYN() {
  using T = typename KernelTuple::data_type;
163 164
  for (int d : TestSizes()) {
    const T a = static_cast<T>(3);
T
tensor-tang 已提交
165 166 167 168 169 170
    Tensor x, y;
    x.Resize({d});
    y.Resize({d});
    T* x_data = x.mutable_data<T>(PlaceType());
    T* y_data = y.mutable_data<T>(PlaceType());
    RandomVec<T>(d, x_data);
171
    BenchAllImpls<KernelTuple, PlaceType>(d, &a, x.data<T>(), y_data, d);
T
tensor-tang 已提交
172
    // test inplace
173
    BenchAllImpls<KernelTuple, PlaceType>(d, &a, x.data<T>(), x_data, d);
174 175 176
  }
}

177 178 179
template <typename KernelTuple, typename PlaceType>
void BenchKernelXRN() {
  using T = typename KernelTuple::data_type;
180 181 182 183
  for (int d : TestSizes()) {
    Tensor x;
    RandomVec<T>(d, x.mutable_data<T>({d}, PlaceType()));
    T res;
184
    BenchAllImpls<KernelTuple, PlaceType>(d, x.data<T>(), &res, d);
185 186 187
  }
}

188 189 190
template <typename KernelTuple, typename PlaceType>
void BenchKernelXYN() {
  using T = typename KernelTuple::data_type;
191
  for (int d : TestSizes()) {
T
tensor-tang 已提交
192 193 194 195 196 197
    Tensor x, y;
    x.Resize({d});
    y.Resize({d});
    T* x_data = x.mutable_data<T>(PlaceType());
    T* y_data = y.mutable_data<T>(PlaceType());
    RandomVec<T>(d, x_data);
198
    BenchAllImpls<KernelTuple, PlaceType>(d, x.data<T>(), y_data, d);
199 200 201
  }
}

202 203 204
template <typename KernelTuple, typename PlaceType>
void BenchKernelLSTM() {
  using T = typename KernelTuple::data_type;
T
tensor-tang 已提交
205 206
  for (bool use_peephole : {true, false}) {
    for (int d : TestSizes()) {
T
tensor-tang 已提交
207
      const jit::lstm_attr_t attr(d, jit::kVSigmoid, jit::kVTanh, jit::kVTanh,
T
tensor-tang 已提交
208
                                  use_peephole);
T
tensor-tang 已提交
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
      Tensor x, ct_1, ct, ht, wp, checked;
      x.Resize({4 * d});
      ct_1.Resize({d});
      ct.Resize({d});
      ht.Resize({d});
      wp.Resize({3 * d});
      checked.Resize({2 * d});
      auto place = PlaceType();
      RandomVec<T>(x.numel(), x.mutable_data<T>(place), -2.f, 2.f);
      RandomVec<T>(wp.numel(), wp.mutable_data<T>(place), -2.f, 2.f);
      RandomVec<T>(ct_1.numel(), ct_1.mutable_data<T>(place), -2.f, 2.f);
      const T* ct_1_data = ct_1.data<T>();
      const T* wp_data = wp.data<T>();
      T* x_data = x.mutable_data<T>(place);
      T* checked_data = checked.mutable_data<T>(place);
      T* ct_data = ct.mutable_data<T>(place);
      T* ht_data = ht.mutable_data<T>(place);
T
tensor-tang 已提交
226 227 228 229 230 231 232 233 234
      jit::lstm_t step;
      step.gates = x_data;
      step.ct_1 = ct_1_data;
      step.ct = ct_data;
      step.ht = ht_data;
      if (use_peephole) {
        step.wp = wp_data;
        step.checked = checked_data;
      }
235
      BenchAllImpls<KernelTuple, PlaceType>(attr, &step, &attr);
T
tensor-tang 已提交
236 237 238 239
    }
  }
}

240 241 242
template <typename KernelTuple, typename PlaceType>
void BenchKernelGRU() {
  using T = typename KernelTuple::data_type;
243
  for (int d : TestSizes()) {
T
tensor-tang 已提交
244
    const jit::gru_attr_t attr(d, jit::kVSigmoid, jit::kVTanh);
T
tensor-tang 已提交
245 246 247 248 249 250 251 252 253 254
    auto place = PlaceType();
    Tensor x, ht_1, ht;
    x.Resize({3 * d});
    ht_1.Resize({d});
    ht.Resize({d});
    RandomVec<T>(3 * d, x.mutable_data<T>(place), -2.f, 2.f);
    RandomVec<T>(d, ht_1.mutable_data<T>(place), -2.f, 2.f);
    const T* ht_1_data = ht_1.data<T>();
    T* x_data = x.mutable_data<T>(place);
    T* ht_data = ht.mutable_data<T>(place);
255 256 257 258
    jit::gru_t step;
    step.gates = x_data;
    step.ht_1 = ht_1_data;
    step.ht = ht_data;
259
    BenchAllImpls<KernelTuple, PlaceType>(attr, &step, &attr);
260 261 262
  }
}

263 264 265
template <typename KernelTuple, typename PlaceType>
void BenchKernelSeqPool() {
  using T = typename KernelTuple::data_type;
266 267
  std::vector<jit::SeqPoolType> pool_types = {
      jit::SeqPoolType::kSum, jit::SeqPoolType::kAvg, jit::SeqPoolType::kSqrt};
268
  for (auto type : pool_types) {
T
tensor-tang 已提交
269
    for (int w : TestSizes()) {
T
tensor-tang 已提交
270
      jit::seq_pool_attr_t attr(w, type);
T
tensor-tang 已提交
271
      for (int h : TestSizes()) {
T
tensor-tang 已提交
272
        attr.h = h;
T
tensor-tang 已提交
273 274 275 276 277 278
        Tensor x, y;
        x.Resize({h * w});
        y.Resize({w});
        RandomVec<T>(h * w, x.mutable_data<T>(PlaceType()), -2.f, 2.f);
        const T* x_data = x.data<T>();
        T* y_data = y.mutable_data<T>(PlaceType());
279
        BenchAllImpls<KernelTuple, PlaceType>(attr, x_data, y_data, &attr);
280 281 282 283 284
      }
    }
  }
}

285 286 287
template <typename KernelTuple, typename PlaceType>
void BenchKernelEmbSeqPool() {
  using T = typename KernelTuple::data_type;
288 289 290 291 292 293 294 295 296
  std::vector<jit::SeqPoolType> pool_types = {jit::SeqPoolType::kSum};
  int64_t tbl_h = 1e4;
  for (int tbl_w : {10, 16, 256}) {
    Tensor table;
    table.Resize({tbl_h, tbl_w});
    RandomVec<T>(tbl_h * tbl_w, table.mutable_data<T>(PlaceType()), -2.f, 2.f);
    const T* table_data = table.data<T>();
    for (auto type : pool_types) {
      for (int idx_w : {1, 2, 10, 16}) {
297
        for (int idx_h : {1, 2, 9, 13, 16}) {
298 299 300 301 302 303 304 305 306 307 308
          int64_t out_w = tbl_w * idx_w;
          jit::emb_seq_pool_attr_t attr(tbl_h, tbl_w, idx_h, idx_w, out_w,
                                        type);
          Tensor idx, out;
          idx.Resize({idx_h, idx_w});
          out.Resize({out_w});
          RandomVec<int64_t>(idx_h * idx_w,
                             idx.mutable_data<int64_t>(PlaceType()), 0,
                             tbl_h - 1);
          const int64_t* idx_data = idx.data<int64_t>();
          T* o_data = out.mutable_data<T>(PlaceType());
309 310
          BenchAllImpls<KernelTuple, PlaceType>(attr, table_data, idx_data,
                                                o_data, &attr);
311 312 313 314 315 316
        }
      }
    }
  }
}

317 318 319
template <typename KernelTuple, typename PlaceType>
void BenchKernelSgd() {
  using T = typename KernelTuple::data_type;
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
  const T lr = 0.1;
  auto UnDuplicatedRandomVec = [](int n, const int64_t lower,
                                  const int64_t upper) -> std::vector<int64_t> {
    PADDLE_ENFORCE_LE(static_cast<size_t>(upper - lower), n - 1);
    PADDLE_ENFORCE_GT(n, 0);
    std::vector<int64_t> all, out;
    for (int i = 0; i < n; ++i) {
      all.push_back(i);
    }
    std::random_shuffle(all.begin(), all.end());
    out.insert(out.begin(), all.begin(), all.begin() + n);
    return out;
  };
  for (int param_h : {1, 1000}) {
    for (int grad_w : {1, 2, 8, 16, 30, 256}) {
      // only benchmark inplace
      Tensor param;
      param.Resize({param_h, grad_w});
      T* param_data = param.mutable_data<T>(PlaceType());
      RandomVec<T>(param_h * grad_w, param_data, -2.f, 2.f);
      for (int rows_size = 1; rows_size <= std::min(param_h, 10); ++rows_size) {
        Tensor grad;
        grad.Resize({rows_size, grad_w});
        std::vector<int64_t> rows =
            UnDuplicatedRandomVec(rows_size, 0, rows_size - 1);
        RandomVec<T>(rows_size * grad_w, grad.mutable_data<T>(PlaceType()),
                     -2.f, 2.f);
        const T* grad_data = grad.data<T>();
        const int64_t* rows_data = rows.data();
        jit::sgd_attr_t attr(param_h, grad_w, rows_size, grad_w, rows_size);
350 351
        BenchAllImpls<KernelTuple, PlaceType>(attr, &lr, param_data, grad_data,
                                              rows_data, param_data, &attr);
352 353 354 355 356
      }
    }
  }
}

357 358 359
template <typename KernelTuple, typename PlaceType>
void BenchKernelMatMul() {
  using T = typename KernelTuple::data_type;
T
tensor-tang 已提交
360
  for (int m : {1, 2, 3, 4}) {
361
    for (int n : TestSizes()) {
T
tensor-tang 已提交
362
      for (int k : TestSizes()) {
T
tensor-tang 已提交
363 364 365 366 367 368 369 370 371
        Tensor a, b, c;
        a.Resize({m * k});
        b.Resize({k * n});
        c.Resize({m * n});
        RandomVec<T>(m * k, a.mutable_data<T>(PlaceType()), -2.f, 2.f);
        RandomVec<T>(k * n, b.mutable_data<T>(PlaceType()), -2.f, 2.f);
        const T* a_data = a.data<T>();
        const T* b_data = b.data<T>();
        T* c_data = c.mutable_data<T>(PlaceType());
372
        const jit::matmul_attr_t attr{m, n, k};
373 374
        BenchAllImpls<KernelTuple, PlaceType>(attr, a_data, b_data, c_data,
                                              &attr);
T
tensor-tang 已提交
375 376 377 378 379
      }
    }
  }
}

380 381 382
template <typename KernelTuple, typename PlaceType>
void BenchKernelSoftmax() {
  using T = typename KernelTuple::data_type;
383 384 385 386 387 388 389 390
  for (int bs : {1, 2, 10}) {
    for (int n : TestSizes()) {
      Tensor x, y;
      x.Resize({bs, n});
      y.Resize({bs, n});
      RandomVec<T>(bs * n, x.mutable_data<T>(PlaceType()), -2.f, 2.f);
      const T* x_data = x.data<T>();
      T* y_data = y.mutable_data<T>(PlaceType());
391
      BenchAllImpls<KernelTuple, PlaceType>(n, x_data, y_data, n, bs, 1);
392 393 394 395
    }
  }
}

396 397 398
template <typename KernelTuple, typename PlaceType>
void BenchKernelLayerNorm() {
  using T = typename KernelTuple::data_type;
399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
  const T epsilon = 9.99999975e-06;
  for (int n : {1, 2, 10}) {
    for (int x_dim_0 : {1, 9, 17, 50}) {
      int left = n * x_dim_0;
      for (int x_dim_1 : TestSizes()) {
        int right = x_dim_1;
        int sz = left * right;
        Tensor x, mean, var, scale, bias, out;
        x.Resize({n, x_dim_0, x_dim_1});
        out.Resize({n, x_dim_0, x_dim_1});
        mean.Resize({n, x_dim_0});
        var.Resize({n, x_dim_0});
        scale.Resize({x_dim_1});
        bias.Resize({x_dim_1});

        RandomVec<T>(sz, x.mutable_data<T>(PlaceType()), -2.f, 2.f);
        RandomVec<T>(left, mean.mutable_data<T>(PlaceType()), -2.f, 2.f);
        RandomVec<T>(left, var.mutable_data<T>(PlaceType()), -2.f, 2.f);
        RandomVec<T>(right, scale.mutable_data<T>(PlaceType()), -2.f, 2.f);
        RandomVec<T>(right, bias.mutable_data<T>(PlaceType()), -2.f, 2.f);

        const T* scale_data = scale.data<T>();
        const T* bias_data = bias.data<T>();
        T* x_data = x.data<T>();
        T* mean_data = mean.data<T>();
        T* var_data = var.data<T>();
        T* out_data = out.mutable_data<T>(PlaceType());

427 428 429
        BenchAllImpls<KernelTuple, PlaceType>(right, x_data, out_data,
                                              mean_data, var_data, scale_data,
                                              bias_data, left, epsilon, right);
430 431 432 433 434
      }
    }
  }
}

435 436 437
template <typename KernelTuple, typename PlaceType>
void BenchKernelCRFDecoding() {
  using T = typename KernelTuple::data_type;
438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
  constexpr int state_trans_base_idx = 2;
  for (int seq_len : {1, 11, 17, 50}) {
    for (int tag_num : TestSizes()) {
      int x_sz = seq_len * tag_num;
      int w_sz = (tag_num + state_trans_base_idx) * tag_num;
      Tensor x, w, alpha, track;
      x.Resize({seq_len, tag_num});
      w.Resize({tag_num + state_trans_base_idx, tag_num});
      alpha.Resize({seq_len, tag_num});
      track.Resize({seq_len, tag_num});

      RandomVec<T>(x_sz, x.mutable_data<T>(PlaceType()), -2.f, 2.f);
      RandomVec<T>(w_sz, w.mutable_data<T>(PlaceType()), -2.f, 2.f);

      const T* x_data = x.data<T>();
      const T* w_data = w.data<T>();
      T* alpha_data = alpha.mutable_data<T>(PlaceType());
      int* track_data = track.mutable_data<int>(PlaceType());

457 458
      BenchAllImpls<KernelTuple, PlaceType>(tag_num, seq_len, x_data, w_data,
                                            alpha_data, track_data, tag_num);
459 460 461 462
    }
  }
}

463 464 465
template <typename KernelTuple, typename PlaceType>
void BenchKernelVBroadcast() {
  using T = typename KernelTuple::data_type;
466
  for (int64_t w : {1, 16, 64, 100, 256}) {
467 468 469 470
    Tensor x;
    x.Resize({w});
    RandomVec<T>(w, x.mutable_data<T>(PlaceType()));
    const T* x_data = x.data<T>();
471
    for (int h : TestSizes()) {
472 473 474
      Tensor y;
      y.Resize({h * w});
      T* y_data = y.mutable_data<T>(PlaceType());
475 476
      BenchAllImpls<KernelTuple, PlaceType>(w, x_data, y_data,
                                            static_cast<int64_t>(h), w);
477 478 479 480
    }
  }
}

481 482 483 484
#define BenchKernelVMul BenchKernelXYZN
#define BenchKernelVAdd BenchKernelXYZN
#define BenchKernelVAddRelu BenchKernelXYZN
#define BenchKernelVSub BenchKernelXYZN
485

486 487
#define BenchKernelVScal BenchKernelAXYN
#define BenchKernelVAddBias BenchKernelAXYN
488

489 490 491 492 493 494 495
#define BenchKernelVRelu BenchKernelXYN
#define BenchKernelVIdentity BenchKernelXYN
#define BenchKernelVSquare BenchKernelXYN
#define BenchKernelVExp BenchKernelXYN
#define BenchKernelVSigmoid BenchKernelXYN
#define BenchKernelVTanh BenchKernelXYN
#define BenchKernelVCopy BenchKernelXYN
496

497 498
#define BenchKernelHMax BenchKernelXRN
#define BenchKernelHSum BenchKernelXRN
499

500 501
#define BenchKernelLSTMCtHt BenchKernelLSTM
#define BenchKernelLSTMC1H1 BenchKernelLSTM
502

503 504 505
#define BenchKernelGRUH1 BenchKernelGRU
#define BenchKernelGRUHtPart1 BenchKernelGRU
#define BenchKernelGRUHtPart2 BenchKernelGRU
506

507
using CPUPlace = paddle::platform::CPUPlace;
508

509 510 511 512
#define BENCH_FP32_CPU(name)                                \
  BENCH_JITKERNEL(name, FP32, CPU) {                        \
    BenchKernel##name<jit::name##Tuple<float>, CPUPlace>(); \
  }
513

514 515 516 517 518
// xyzn
BENCH_FP32_CPU(VMul);
BENCH_FP32_CPU(VAdd);
BENCH_FP32_CPU(VAddRelu);
BENCH_FP32_CPU(VSub);
519

520 521 522
// axyn
BENCH_FP32_CPU(VScal);
BENCH_FP32_CPU(VAddBias);
523

524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
// xyn
BENCH_FP32_CPU(VRelu);
BENCH_FP32_CPU(VIdentity);
BENCH_FP32_CPU(VSquare);
BENCH_FP32_CPU(VExp);
BENCH_FP32_CPU(VSigmoid);
BENCH_FP32_CPU(VTanh);
BENCH_FP32_CPU(VCopy);

// xrn
BENCH_FP32_CPU(HMax);
BENCH_FP32_CPU(HSum);

// LSTM
BENCH_FP32_CPU(LSTMCtHt);
BENCH_FP32_CPU(LSTMC1H1);

// GRU
BENCH_FP32_CPU(GRUH1);
BENCH_FP32_CPU(GRUHtPart1);
BENCH_FP32_CPU(GRUHtPart2);

BENCH_FP32_CPU(LayerNorm);
BENCH_FP32_CPU(CRFDecoding);

BENCH_FP32_CPU(SeqPool);
BENCH_FP32_CPU(EmbSeqPool);
BENCH_FP32_CPU(MatMul);
BENCH_FP32_CPU(Softmax);
BENCH_FP32_CPU(Sgd);
BENCH_FP32_CPU(VBroadcast);
555

556 557 558 559 560 561
// Benchmark all jit kernels including jitcode, mkl and refer.
// To use this tool, run command: ./benchmark [options...]
// Options:
//     --burning: the burning time before count
//     --repeat: the repeat times
//     --max_size: the max size would be tested
562
//     --filter: the bench name would be run
563 564 565 566 567
int main(int argc, char* argv[]) {
  gflags::ParseCommandLineFlags(&argc, &argv, true);
  google::InitGoogleLogging(argv[0]);
  LOG(INFO) << "Burning " << FLAGS_burning << " times, Repeat " << FLAGS_repeat
            << " times.";
T
tensor-tang 已提交
568

569
  RUN_ALL_BENCHMARK();
570
}