custom_kernel_test.cc 13.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#if defined _WIN32 || defined __APPLE__
#else
#define _LINUX
#endif

#include "paddle/fluid/framework/custom_kernel.h"

#include <glog/logging.h>
#include <gtest/gtest.h>
#include "paddle/extension.h"
C
chentianyu03 已提交
25
#include "paddle/fluid/framework/lod_tensor.h"
26
#include "paddle/fluid/framework/op_kernel_info_helper.h"
C
chentianyu03 已提交
27 28
#include "paddle/fluid/memory/allocation/allocator_facade.h"
#include "paddle/fluid/platform/device_context.h"
29
#include "paddle/pten/api/lib/utils/allocator.h"
C
chentianyu03 已提交
30
#include "paddle/pten/api/lib/utils/storage.h"
31 32 33 34 35 36 37 38 39 40
#include "paddle/pten/core/dense_tensor.h"
#include "paddle/pten/core/kernel_context.h"
#include "paddle/pten/core/kernel_factory.h"
#include "paddle/pten/infermeta/binary.h"
#include "paddle/utils/small_vector.h"

#ifdef _LINUX
// user kernel function
namespace custom_kernel {

41
// Here we use fake_dot for test
42 43 44
// input 3: two Tensors and one std::vector<Tensor>
// attribute 11: fake_attributes
// output 2: one Tensor* and one std::vector<Tensor*>
45 46
template <typename T, typename Context>
void FakeDot(const Context& dev_ctx, const paddle::Tensor& x,
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
             const paddle::Tensor& y,
             const std::vector<paddle::Tensor>& fake_input_vec,
             bool fake_attr_bool, int fake_attr_int, float fake_attr_float,
             double fake_attr_double, int64_t fake_attr_int64,
             pten::dtype::float16 fake_attr_f16, pten::DataType fake_attr_dtype,
             const pten::Scalar& fake_attr_scalar,
             const pten::ScalarArray& fake_attr_scalar_array,
             const std::vector<int64_t>& fake_attr_int64_vec,
             const std::vector<int>& fake_attr_int_vec, paddle::Tensor* out,
             std::vector<paddle::Tensor*> fake_out_vec) {
  // print param info
  std::cout << "fake_input_vec.size: " << fake_input_vec.size() << std::endl;
  std::cout << "fake_attr_bool: " << fake_attr_bool << std::endl;
  std::cout << "fake_attr_int: " << fake_attr_int << std::endl;
  std::cout << "fake_attr_float: " << fake_attr_float << std::endl;
  std::cout << "fake_attr_double: " << fake_attr_double << std::endl;
  std::cout << "fake_attr_int64: " << fake_attr_int64 << std::endl;
  std::cout << "fake_attr_f16: " << fake_attr_f16 << std::endl;
  std::cout << "fake_attr_dtype: " << fake_attr_dtype << std::endl;
  std::cout << "fake_attr_int64_vec: " << fake_attr_int64_vec.size()
            << std::endl;
  std::cout << "fake_attr_int_vec: " << fake_attr_int_vec.size() << std::endl;
  std::cout << "fake_out_vec: " << fake_out_vec.size() << std::endl;

  // assert check
  assert(fake_input_vec.size() == 2);
  assert(fake_attr_bool == false);
  assert(fake_attr_int == 1);
  assert(fake_attr_float == 2);
  assert(fake_attr_double == 3);
  assert(fake_attr_int64 == 4);
78
  assert(fake_attr_f16 == pten::dtype::float16(5));
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
  assert(fake_attr_dtype == pten::DataType::UINT32);
  assert(fake_attr_int64_vec.size() == 0);
  assert(fake_attr_int_vec.size() == 0);
  assert(fake_out_vec.size() == 2);

  auto const *x_ptr = x.data<T>(), *x_ptr_ = &x_ptr[0];
  auto const *y_ptr = y.data<T>(), *y_ptr_ = &y_ptr[0];
  auto* z = out->mutable_data<T>(paddle::PlaceType::kCPU);
  auto shape = x.shape();
  auto const N = x.numel();
  auto const B = shape[shape.size() - 1];
  for (int j = 0; j < N / B; j++) {
    T ss = 0;
    for (int i = 0; i < B; i++) ss += (*x_ptr_++) * (*y_ptr_++);
    z[j] = ss;
  }
}
}  // namespace custom_kernel

98 99
PD_REGISTER_KERNEL(fake_dot, CPU, ALL_LAYOUT, custom_kernel::FakeDot, float,
                   double, int, int64_t, int8_t, uint8_t) {}
100 101 102

// Upper code will store dot kernels info into OpKernelInfoMap
TEST(CustomKernel, custom_kernel_dot) {
103
  std::string op_name = "fake_dot";
104
  pten::Backend backend = pten::Backend::CPU;
105
  pten::DataLayout layout = pten::DataLayout::ALL_LAYOUT;
106 107

  // 1.custom kernel info parsed and store
108
  EXPECT_TRUE(paddle::OpKernelInfoMap::Instance().GetMap().find(op_name) !=
109 110 111 112
              paddle::OpKernelInfoMap::Instance().GetMap().end());

  // 2.info check
  EXPECT_EQ(
113 114 115
      6, static_cast<int>(paddle::OpKernelInfoMap::Instance()[op_name].size()));
  // index 0
  EXPECT_TRUE(paddle::OpKernelInfoMap::Instance()[op_name][0].GetBackend() ==
116
              backend);
117
  EXPECT_TRUE(paddle::OpKernelInfoMap::Instance()[op_name][0].GetDataLayout() ==
118
              layout);
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
  EXPECT_TRUE(paddle::OpKernelInfoMap::Instance()[op_name][0].GetDataType() ==
              pten::DataType::FLOAT32);
  // index 5
  EXPECT_TRUE(paddle::OpKernelInfoMap::Instance()[op_name][5].GetBackend() ==
              backend);
  EXPECT_TRUE(paddle::OpKernelInfoMap::Instance()[op_name][5].GetDataLayout() ==
              layout);
  EXPECT_TRUE(paddle::OpKernelInfoMap::Instance()[op_name][5].GetDataType() ==
              pten::DataType::UINT8);

  // 3.before register
  auto& kernel_factory_instance = pten::KernelFactory::Instance();
  auto& kernels = pten::KernelFactory::Instance().kernels();
  EXPECT_TRUE(!kernel_factory_instance.HasCompatiblePtenKernel(op_name));

  // mock fake_dot is supported by pten for HasCompatiblePtenKernel check while
  // registering
  auto& fake_dot_kernels = kernels[op_name];

  EXPECT_TRUE(fake_dot_kernels.find(
                  pten::KernelKey(backend, layout, pten::DataType::FLOAT32)) ==
              fake_dot_kernels.end());
  EXPECT_TRUE(fake_dot_kernels.find(
                  pten::KernelKey(backend, layout, pten::DataType::FLOAT64)) ==
              fake_dot_kernels.end());
  EXPECT_TRUE(fake_dot_kernels.find(
                  pten::KernelKey(backend, layout, pten::DataType::INT32)) ==
              fake_dot_kernels.end());
  EXPECT_TRUE(fake_dot_kernels.find(
                  pten::KernelKey(backend, layout, pten::DataType::INT64)) ==
              fake_dot_kernels.end());
  EXPECT_TRUE(fake_dot_kernels.find(
                  pten::KernelKey(backend, layout, pten::DataType::INT8)) ==
              fake_dot_kernels.end());
  EXPECT_TRUE(fake_dot_kernels.find(
                  pten::KernelKey(backend, layout, pten::DataType::UINT8)) ==
              fake_dot_kernels.end());

  // register
158 159 160
  paddle::framework::RegisterKernelWithMetaInfoMap(
      paddle::OpKernelInfoMap::Instance());

161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
  EXPECT_TRUE(fake_dot_kernels.find(
                  pten::KernelKey(backend, layout, pten::DataType::FLOAT32)) !=
              fake_dot_kernels.end());
  EXPECT_TRUE(fake_dot_kernels.find(
                  pten::KernelKey(backend, layout, pten::DataType::FLOAT64)) !=
              fake_dot_kernels.end());
  EXPECT_TRUE(fake_dot_kernels.find(
                  pten::KernelKey(backend, layout, pten::DataType::INT32)) !=
              fake_dot_kernels.end());
  EXPECT_TRUE(fake_dot_kernels.find(
                  pten::KernelKey(backend, layout, pten::DataType::INT64)) !=
              fake_dot_kernels.end());
  EXPECT_TRUE(fake_dot_kernels.find(
                  pten::KernelKey(backend, layout, pten::DataType::INT8)) !=
              fake_dot_kernels.end());
  EXPECT_TRUE(fake_dot_kernels.find(
                  pten::KernelKey(backend, layout, pten::DataType::UINT8)) !=
              fake_dot_kernels.end());
179 180

  // 4.kernel select
181 182
  auto kernel = kernel_factory_instance.SelectKernelOrThrowError(
      op_name, pten::KernelKey(backend, layout, pten::DataType::UINT8));
183 184 185 186 187 188

  // 5.prepare parameters for kernel
  const auto alloc = std::make_unique<paddle::experimental::DefaultAllocator>(
      paddle::platform::CPUPlace());
  auto dense_x = std::make_shared<pten::DenseTensor>(
      alloc.get(), pten::DenseTensorMeta(pten::DataType::UINT8,
C
chentianyu03 已提交
189
                                         pten::framework::make_ddim({2, 3}),
190 191 192 193 194 195
                                         pten::DataLayout::NCHW));
  auto* dense_x_data =
      dense_x->mutable_data<uint8_t>(paddle::platform::CPUPlace());

  auto dense_y = std::make_shared<pten::DenseTensor>(
      alloc.get(), pten::DenseTensorMeta(pten::DataType::UINT8,
C
chentianyu03 已提交
196
                                         pten::framework::make_ddim({2, 3}),
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
                                         pten::DataLayout::NCHW));
  auto* dense_y_data =
      dense_y->mutable_data<uint8_t>(paddle::platform::CPUPlace());

  // dot x,y and result
  uint8_t sum[2] = {0, 0};
  for (size_t i = 0; i < 2; ++i) {
    for (size_t j = 0; j < 3; ++j) {
      dense_x_data[i * 3 + j] = (i * 3 + j);
      dense_y_data[i * 3 + j] = (i * 3 + j);
      sum[i] += (i * 3 + j) * (i * 3 + j);
    }
  }

  // 6.prepare kernel_context
  auto& pool = paddle::platform::DeviceContextPool::Instance();
  auto* dev_ctx = pool.Get(paddle::platform::CPUPlace());
  auto kernel_context = pten::KernelContext(dev_ctx);
  kernel_context.EmplaceBackInput(dense_x.get());  // idx:0, index:[0,1)
  kernel_context.EmplaceBackInput(dense_y.get());  // idx:1, index:[1,2)

  // fake_input_vec: idx:2, index:[2,4)
  size_t fake_input_vec_idx = 2;
  size_t fake_input_vec_index_start = 2;
  size_t fake_input_vec_index_end = 4;
  kernel_context.EmplaceBackInputWithoutSetRange(dense_x.get());
  kernel_context.EmplaceBackInputWithoutSetRange(dense_y.get());
  kernel_context.AssignInputRange(
      std::make_pair(fake_input_vec_index_start, fake_input_vec_index_end),
      fake_input_vec_idx);

  bool fake_attr_bool = false;
  int fake_attr_int = 1;
  float fake_attr_float = 2.0;
  double fake_attr_double = 3.0;
  int64_t fake_attr_int64 = 4;
  pten::dtype::float16 fake_attr_f16 = pten::dtype::float16(5);
  pten::DataType fake_attr_dtype = pten::DataType::UINT32;
  paddle::framework::LoDTensor tmp_tensor;
236
  tmp_tensor.mutable_data<uint8_t>({1}, pten::TransToPtenPlace(backend));
C
chentianyu03 已提交
237
  pten::Scalar fake_attr_scalar{tmp_tensor};
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
  pten::ScalarArray fake_attr_scalar_array;
  std::vector<int64_t> fake_attr_int64_vec;
  std::vector<int> fake_attr_int_vec;

  kernel_context.EmplaceBackAttr(fake_attr_bool);
  kernel_context.EmplaceBackAttr(fake_attr_int);
  kernel_context.EmplaceBackAttr(fake_attr_float);
  kernel_context.EmplaceBackAttr(fake_attr_double);
  kernel_context.EmplaceBackAttr(fake_attr_int64);
  kernel_context.EmplaceBackAttr(fake_attr_f16);
  kernel_context.EmplaceBackAttr(fake_attr_dtype);
  kernel_context.EmplaceBackAttr(fake_attr_scalar);
  kernel_context.EmplaceBackAttr(fake_attr_scalar_array);
  kernel_context.EmplaceBackAttr(fake_attr_int64_vec);
  kernel_context.EmplaceBackAttr(fake_attr_int_vec);

  auto dense_out = std::make_shared<pten::DenseTensor>(
      pten::make_intrusive<paddle::experimental::SharedStorage>(
256
          pten::TransToPtenPlace(backend)),
257 258 259 260
      pten::DenseTensorMeta());

  pten::MetaTensor meta_out(dense_out.get());
  pten::DotInferMeta(*dense_x, *dense_y, &meta_out);
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
  kernel_context.EmplaceBackOutput(dense_out.get());  // idx:0 index:[0,1)

  // fake_input_vec: idx:1, index:[1,3)
  size_t fake_out_vec_idx = 1;
  size_t fake_out_vec_index_start = 1;
  size_t fake_out_vec_index_end = 3;
  kernel_context.EmplaceBackOutputWithoutSetRange(dense_out.get());
  kernel_context.EmplaceBackOutputWithoutSetRange(dense_out.get());
  kernel_context.AssignOutputRange(
      std::make_pair(fake_out_vec_index_start, fake_out_vec_index_end),
      fake_out_vec_idx);

  // 7.kernel call
  kernel(&kernel_context);

  // 8.check result
  ASSERT_EQ(dense_out->dims().size(), 2);
  ASSERT_EQ(dense_out->dims()[0], 2);
  ASSERT_EQ(dense_out->numel(), 2);
  ASSERT_EQ(dense_out->dtype(), pten::DataType::UINT8);
  ASSERT_EQ(dense_out->layout(), pten::DataLayout::NCHW);
  ASSERT_EQ(dense_out->initialized(), true);

  auto expect_result = sum;
  auto actual_result0 = dense_out->data<uint8_t>()[0];
  auto actual_result1 = dense_out->data<uint8_t>()[1];
  ASSERT_EQ(expect_result[0], actual_result0);
  ASSERT_EQ(expect_result[1], actual_result1);
}

// test OpKernelInfoHelper
TEST(OpKernelInfoHelper, op_kernel_info_help_getters) {
  using OpKernelInfoHelper = paddle::framework::OpKernelInfoHelper;
294
  std::string op_name = "fake_dot";
295 296
  pten::Backend backend = pten::Backend::CPU;
  pten::DataLayout layout = pten::DataLayout::ANY;
297
  pten::DataType dtype = pten::DataType::FLOAT32;
298 299 300 301 302 303 304 305 306 307 308 309

  auto op_kernel_info = paddle::OpKernelInfoMap::Instance()[op_name][0];

  EXPECT_EQ(op_name, OpKernelInfoHelper::GetOpName(op_kernel_info));
  EXPECT_EQ(backend, OpKernelInfoHelper::GetBackend(op_kernel_info));
  EXPECT_EQ(layout, OpKernelInfoHelper::GetDataLayout(op_kernel_info));
  EXPECT_EQ(dtype, OpKernelInfoHelper::GetDataType(op_kernel_info));

  EXPECT_EQ(pten::KernelKey(backend, layout, dtype),
            OpKernelInfoHelper::GetKernelKey(op_kernel_info));

  paddle::CustomKernelFunc kernel_fn =
310
      PD_PT_KERNEL(custom_kernel::FakeDot<float, paddle::CPUContext>);
311 312
  EXPECT_EQ(kernel_fn, OpKernelInfoHelper::GetKernelFn(op_kernel_info));

313 314
  void* variadic_func =
      PD_PT_VARIADIC_KERNEL(custom_kernel::FakeDot<float, paddle::CPUContext>);
315 316 317 318 319 320 321 322 323 324 325
  EXPECT_EQ(variadic_func,
            OpKernelInfoHelper::GetVariadicKernelFn(op_kernel_info));

  auto& input_defs = OpKernelInfoHelper::GetInputDefs(op_kernel_info);
  auto& output_defs = OpKernelInfoHelper::GetOutputDefs(op_kernel_info);
  auto& attribute_defs = OpKernelInfoHelper::GetAttributeDefs(op_kernel_info);
  EXPECT_EQ(3, static_cast<int>(input_defs.size()));
  EXPECT_EQ(2, static_cast<int>(output_defs.size()));
  EXPECT_EQ(11, static_cast<int>(attribute_defs.size()));
}
#endif