tensor_array.cc 8.6 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,


   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/framework/tensor_array.h"

#include <glog/logging.h>
#include <algorithm>
#include <limits>

namespace paddle {
namespace framework {

namespace detail {

/*
 * Offer an iterator over the length-sorted lod-tensor's top level. The top
 * level of a lod-tensor stores batch-size of sequences, each top-level sequence
 * may contains several lower-level sequences, sort top-level lod by the numbers
 * of lower-level sequences in descending order, so that during RNN's running,
 * the batch-size will keep decreasing, the short sentences will end at the tail
 * of each batch.
 *
 * Let's take a simple lod-tensor for example
 *
 *   |(0)       |(1)        top-level has two instances
 *   |||        |||||    lower-level
 *
 * sort by lower-level's length
 *
 *   |(1)       |(0)
 *   |||||      |||
 *
 * when RNN runs, it get 5 batches (equals the number of elements the longest
 * sequence has)
 *
 * |||||
 * |||
 *
 * the first three batches has two elements, the last two elements just has 1
 * element each.
 */
struct DynamicBatchUnpacker {
  using value_type = float;

  DynamicBatchUnpacker(const LoDTensor& source, size_t level,
                       bool descend = true)
      : source(&source), level(level) {
    BuildLengthSortedMeta(descend);
  }

  LoDTensor GetBatch(size_t index);

  std::vector<DySeqMeta> meta;

  LoDTensor const* source;
  size_t level;

 protected:
  void BuildLengthSortedMeta(bool descend);
};

LoDTensor PackDynamicBatch(const std::vector<LoDTensor>& source,
                           const std::vector<DySeqMeta>& meta, const LoD& lod,
                           size_t level);

}  // namespace detail

const LoDTensor& TensorArray::Read(size_t index) const {
  PADDLE_ENFORCE_LE(index, MAX_SIZE, "index[%d] too large", index);
  if (index >= size()) {
    values_.resize(index + 1);
  }
  return values_[index];
}

void TensorArray::Write(size_t index, const LoDTensor& value) {
  PADDLE_ENFORCE_LE(index, MAX_SIZE, "index[%d] too large", index);

  if (index >= size()) {
    values_.resize(index + 1);
  }

  values_[index].Resize(value.dims());
  values_[index].mutable_data<value_type>(platform::CPUPlace());
  values_[index].CopyFrom<value_type>(value, platform::CPUPlace());
}

void TensorArray::WriteShared(size_t index, const LoDTensor& value) {
  PADDLE_ENFORCE_LE(index, MAX_SIZE, "index[%d] too large", index);
  if (index >= size()) {
    values_.resize(index + 1);
  }

  values_[index].ShareDataWith<value_type>(value);
}

LoDTensor TensorArray::Pack(size_t level, const std::vector<DySeqMeta>& meta,
                            const LoD& lod) const {
  return detail::PackDynamicBatch(values_, meta, lod, level);
}

std::vector<DySeqMeta> TensorArray::Unpack(const LoDTensor& source, int level,
                                           bool length_desend) {
  detail::DynamicBatchUnpacker unpacker(source, level,
                                        length_desend /*descend*/);

  // find max length of all the sequences
  size_t max_length = 0;
  for (const auto& seq : unpacker.meta) {
    max_length = std::max(max_length, seq.end - seq.begin);
  }

  // write batches to values
  for (size_t batch_id = 0; batch_id < max_length; batch_id++) {
    Write(batch_id, unpacker.GetBatch(batch_id));
  }

  return unpacker.meta;
}

LoDTensor TensorArray::Stack() const {
  LoDTensor result;
  if (size() == 0) return result;

  const auto& first_dims = values_.front().dims();
  // check all the values have the same shape
  // TODO(superjom) check the same dtypes
  for (size_t idx = 1; idx < size(); idx++) {
    const auto& value_dims = values_[idx].dims();
    PADDLE_ENFORCE_EQ(first_dims, value_dims);
  }

  // copy
  auto result_dims = vectorize(first_dims);
  result_dims.insert(result_dims.begin(), size());
  result.Resize(make_ddim(result_dims));
  result.mutable_data<value_type>(platform::CPUPlace());

  for (size_t idx = 0; idx < size(); idx++) {
    result.Slice<value_type>(idx, idx + 1)
        .CopyFrom<value_type>(Read(idx), platform::CPUPlace());
  }
  return result;
}

void TensorArray::Unstack(const LoDTensor& source) const {
  Unstack(source, false /*data_shared*/);
}

void TensorArray::UnstackShared(const LoDTensor& source) const {
  Unstack(source, true /*data_shared*/);
}

void TensorArray::Unstack(const LoDTensor& source, bool data_shared) const {
  size_t first_dim = source.dims()[0];
  DDim value_dims = slice_ddim(source.dims(), 1, source.dims().size());
  PADDLE_ENFORCE_GT(first_dim, 0,
                    "source should have some data to be unstacked");

  values_.resize(first_dim);

  for (size_t elem = 0; elem < first_dim; elem++) {
    // create a new value
    auto& value = values_[elem];
    if (data_shared) {
      // share memory
      value.ShareDataWith<value_type>(source.Slice<value_type>(elem, elem + 1));
    } else {
      // copy
      value.Resize(value_dims);
      value.CopyFrom<value_type>(source.Slice<value_type>(elem, elem + 1),
                                 platform::CPUPlace());
    }
  }
}

size_t TensorArray::size() const { return values_.size(); }

namespace detail {

void DynamicBatchUnpacker::BuildLengthSortedMeta(bool descend) {
  PADDLE_ENFORCE(meta.empty(), "duplicate build meta");
  // collect meta for each sequence in some level
  auto lod = SliceLevels(source->lod(), level, level + 1)[0];

  for (size_t seq_id = 0; seq_id < lod.size() - 1; seq_id++) {
    DySeqMeta seq_meta({lod[seq_id], lod[seq_id + 1], seq_id});
    meta.push_back(seq_meta);
  }

  PADDLE_ENFORCE_GT(meta.size(), 0, "meta is empty");

  // sort by length
  sort(meta.begin(), meta.end(),
       [descend](const DySeqMeta& a, const DySeqMeta& b) {
         bool a_ge_b = (a.end - a.begin) > (b.end - b.begin);
         return descend ? a_ge_b : !a_ge_b;
       });
}

LoDTensor DynamicBatchUnpacker::GetBatch(size_t index) {
  PADDLE_ENFORCE(!meta.empty(), "should build meta first");
  LoDTensor result;

  // collect indice need to copy to the batch
  std::vector<size_t> indice;
  for (size_t seq_id = 0; seq_id < meta.size(); seq_id++) {
    const auto& seq_meta = meta[seq_id];
    if (index >= seq_meta.end) break;
    indice.push_back(seq_meta.begin + index);
  }

  PADDLE_ENFORCE(!indice.empty(), "invalid batch at %d", index);

  // copy the indice of records in LoDTensor
  auto record_dims = slice_ddim(source->dims(), 1, source->dims().size());
  auto record_dims_vec = vectorize(record_dims);
  record_dims_vec.insert(record_dims_vec.begin(), indice.size());
  result.Resize(make_ddim(record_dims_vec));
  result.mutable_data<value_type>(platform::CPUPlace());

  for (size_t i = 0; i < indice.size() - 1; i++) {
    auto index = indice[i];
    auto target = result.Slice<value_type>(i, i + 1);
    auto source_ = source->Slice<value_type>(index, index + 1);
    target.CopyFrom<value_type>(source_, platform::CPUPlace());
  }

  return result;
}

LoDTensor PackDynamicBatch(const std::vector<LoDTensor>& source,
                           const std::vector<DySeqMeta>& meta, const LoD& lod,
                           size_t level) {
  PADDLE_ENFORCE(!source.empty());
  PADDLE_ENFORCE(!meta.empty());
  PADDLE_ENFORCE(!lod.empty());

  LoDTensor result;

  // init result space
  auto record_dims = slice_ddim(source[0].dims(), 1, source[0].dims().size());
  auto record_dims_vec = vectorize(record_dims);
  auto height = lod[level].back();
  record_dims_vec.insert(record_dims_vec.begin(), height);
  result.Resize(make_ddim(record_dims_vec));
  result.mutable_data<float>(platform::CPUPlace());

  for (size_t batch_id = 0; batch_id < source.size(); batch_id++) {
    for (size_t seq_id = 0; seq_id < meta.size(); seq_id++) {
      const auto& seq_meta = meta[seq_id];
      // source is source[batch_id][seq_id]
      // target is result[index]
      auto index = seq_meta.begin + batch_id;
      if (index >= seq_meta.end) break;
      auto source_ = source[batch_id].Slice<float>(seq_id, seq_id + 1);
      auto target = result.Slice<float>(index, index + 1);
      target.CopyFrom<float>(source_, platform::CPUPlace());
    }
  }

  result.set_lod(lod);

  return result;
}

}  // namespace detail

}  // namespace framework
}  // namespace paddle