nets.py 11.3 KB
Newer Older
D
dzhwinter 已提交
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
import layers
F
fengjiayi 已提交
15

16 17 18
__all__ = [
    "simple_img_conv_pool",
    "sequence_conv_pool",
19
    "glu",
20
    "scaled_dot_product_attention",
21
]
D
dzhwinter 已提交
22

F
fengjiayi 已提交
23 24 25

def simple_img_conv_pool(input,
                         num_filters,
D
dzhwinter 已提交
26
                         filter_size,
F
fengjiayi 已提交
27 28 29
                         pool_size,
                         pool_stride,
                         act,
F
fengjiayi 已提交
30
                         param_attr=None,
C
chengduoZH 已提交
31
                         pool_type='max',
C
chengduoZH 已提交
32
                         use_cudnn=True):
F
fengjiayi 已提交
33 34 35 36
    conv_out = layers.conv2d(
        input=input,
        num_filters=num_filters,
        filter_size=filter_size,
F
fengjiayi 已提交
37
        param_attr=param_attr,
C
chengduoZH 已提交
38 39
        act=act,
        use_cudnn=use_cudnn)
F
fengjiayi 已提交
40 41 42 43

    pool_out = layers.pool2d(
        input=conv_out,
        pool_size=pool_size,
Q
Qiao Longfei 已提交
44
        pool_type=pool_type,
C
chengduoZH 已提交
45 46
        pool_stride=pool_stride,
        use_cudnn=use_cudnn)
Q
Qiao Longfei 已提交
47 48 49 50 51 52 53 54 55
    return pool_out


def img_conv_group(input,
                   conv_num_filter,
                   pool_size,
                   conv_padding=1,
                   conv_filter_size=3,
                   conv_act=None,
F
fengjiayi 已提交
56
                   param_attr=None,
Q
Qiao Longfei 已提交
57
                   conv_with_batchnorm=False,
W
wanghaoshuang 已提交
58
                   conv_batchnorm_drop_rate=0.0,
Q
Qiao Longfei 已提交
59
                   pool_stride=1,
C
chengduoZH 已提交
60
                   pool_type=None,
C
chengduoZH 已提交
61
                   use_cudnn=True):
Q
Qiao Longfei 已提交
62 63 64 65 66
    """
    Image Convolution Group, Used for vgg net.
    """
    tmp = input
    assert isinstance(conv_num_filter, list) or \
67
        isinstance(conv_num_filter, tuple)
Q
Qiao Longfei 已提交
68 69 70 71 72 73 74 75 76

    def __extend_list__(obj):
        if not hasattr(obj, '__len__'):
            return [obj] * len(conv_num_filter)
        else:
            return obj

    conv_padding = __extend_list__(conv_padding)
    conv_filter_size = __extend_list__(conv_filter_size)
F
fengjiayi 已提交
77
    param_attr = __extend_list__(param_attr)
Q
Qiao Longfei 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90
    conv_with_batchnorm = __extend_list__(conv_with_batchnorm)
    conv_batchnorm_drop_rate = __extend_list__(conv_batchnorm_drop_rate)

    for i in xrange(len(conv_num_filter)):
        local_conv_act = conv_act
        if conv_with_batchnorm[i]:
            local_conv_act = None

        tmp = layers.conv2d(
            input=tmp,
            num_filters=conv_num_filter[i],
            filter_size=conv_filter_size[i],
            padding=conv_padding[i],
F
fengjiayi 已提交
91
            param_attr=param_attr[i],
C
chengduoZH 已提交
92
            act=local_conv_act,
C
chengduoZH 已提交
93
            use_cudnn=use_cudnn)
Q
Qiao Longfei 已提交
94 95

        if conv_with_batchnorm[i]:
96
            tmp = layers.batch_norm(input=tmp, act=conv_act)
Q
Qiao Longfei 已提交
97 98
            drop_rate = conv_batchnorm_drop_rate[i]
            if abs(drop_rate) > 1e-5:
99
                tmp = layers.dropout(x=tmp, dropout_prob=drop_rate)
Q
Qiao Longfei 已提交
100 101 102 103 104

    pool_out = layers.pool2d(
        input=tmp,
        pool_size=pool_size,
        pool_type=pool_type,
C
chengduoZH 已提交
105
        pool_stride=pool_stride,
C
chengduoZH 已提交
106
        use_cudnn=use_cudnn)
F
fengjiayi 已提交
107
    return pool_out
D
dzhwinter 已提交
108 109 110 111 112


def sequence_conv_pool(input,
                       num_filters,
                       filter_size,
F
fengjiayi 已提交
113
                       param_attr=None,
114
                       act="sigmoid",
115
                       pool_type="max"):
D
dzhwinter 已提交
116 117 118 119
    conv_out = layers.sequence_conv(
        input=input,
        num_filters=num_filters,
        filter_size=filter_size,
F
fengjiayi 已提交
120
        param_attr=param_attr,
121
        act=act)
D
dzhwinter 已提交
122

123
    pool_out = layers.sequence_pool(input=conv_out, pool_type=pool_type)
D
dzhwinter 已提交
124
    return pool_out
G
guosheng 已提交
125 126 127 128


def glu(input, dim=-1):
    """
Y
ying 已提交
129 130 131
    The gated linear unit composed by split, sigmoid activation and elementwise
    multiplication. Specifically, Split the input into two equal sized parts
    :math:`a` and :math:`b` along the given dimension and then compute as
G
guosheng 已提交
132
    following:
G
guosheng 已提交
133 134 135 136 137

        .. math::

            {GLU}(a, b)= a \otimes \sigma(b)

Y
ying 已提交
138
    Refer to `Language Modeling with Gated Convolutional Networks
G
guosheng 已提交
139
    <https://arxiv.org/pdf/1612.08083.pdf>`_.
Y
ying 已提交
140

G
guosheng 已提交
141 142
    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
ying 已提交
143
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
144 145 146 147 148 149 150 151 152
            dimension to split along is :math:`rank(input) + dim`.

    Returns:
        Variable: The Tensor variable with half the size of input.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 6, 9]
153
            fluid.nets.glu(input=x, dim=1)  # shape of output: [3, 3, 9]
G
guosheng 已提交
154 155 156
    """

    a, b = layers.split(input, num_or_sections=2, dim=dim)
G
guosheng 已提交
157 158
    act_b = layers.sigmoid(x=b)
    out = layers.elementwise_mul(x=a, y=act_b)
G
guosheng 已提交
159
    return out
160 161


Y
ying 已提交
162 163 164
def scaled_dot_product_attention(queries,
                                 keys,
                                 values,
Y
ying 已提交
165
                                 num_heads=1,
Y
ying 已提交
166
                                 dropout_rate=0.):
167 168 169
    """
    The dot-product attention.

170 171 172
    Attention mechanism can be seen as mapping a query and a set of key-value
    pairs to an output. The output is computed as a weighted sum of the values,
    where the weight assigned to each value is computed by a compatibility
173
    function (dot-product here) of the query with the corresponding key.
Y
ying 已提交
174 175

    The dot-product attention can be implemented through (batch) matrix
176 177 178 179
    multipication as follows:

        .. math::

180
            Attention(Q, K, V)= softmax(QK^\mathrm{T})V
181

Y
ying 已提交
182
    Refer to `Attention Is All You Need
183 184
    <https://arxiv.org/pdf/1706.03762.pdf>`_.

Y
ying 已提交
185
    Args:
186

Y
ying 已提交
187 188 189 190 191 192 193
        queries (Variable): The input variable which should be a 3-D Tensor.
        keys (Variable): The input variable which should be a 3-D Tensor.
        values (Variable): The input variable which should be a 3-D Tensor.
        num_heads (int): Head number to compute the scaled dot product
                         attention. Default value is 1.
        dropout_rate (float): The dropout rate to drop the attention weight.
                              Default value is 0.
194 195

    Returns:
Y
ying 已提交
196 197

        Variable: A 3-D Tensor computed by multi-head scaled dot product
198
                  attention.
199

Y
ying 已提交
200 201 202 203 204 205 206 207 208 209 210 211 212
    Raises:

        ValueError: If input queries, keys, values are not 3-D Tensors.

    NOTE:
        1. When num_heads > 1, three linear projections are learned respectively
        to map input queries, keys and values into queries', keys' and values'.
        queries', keys' and values' have the same shapes with queries, keys
        and values.

        1. When num_heads == 1, scaled_dot_product_attention has no learnable
        parameters.

213 214 215
    Examples:
        .. code-block:: python

Y
ying 已提交
216 217 218
            # Suppose q, k, v are Tensors with the following shape:
            # q: [3, 5, 9], k: [3, 6, 9], v: [3, 6, 10]

Y
ying 已提交
219 220
            contexts = fluid.nets.scaled_dot_product_attention(q, k, v)
            contexts.shape  # [3, 5, 10]
221
    """
Y
ying 已提交
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
    if not (len(queries.shape) == len(keys.shape) == len(values.shape) == 3):
        raise ValueError(
            "Inputs quries, keys and values should all be 3-D tensors.")

    if queries.shape[-1] != keys.shape[-1]:
        raise ValueError(
            "The hidden size of queries and keys should be the same.")
    if keys.shape[-2] != values.shape[-2]:
        raise ValueError(
            "The max sequence length in query batch and in key batch "
            "should be the same.")
    if keys.shape[-1] % num_heads != 0:
        raise ValueError("The hidden size of keys (%d) must be divisible "
                         "by the number of attention heads (%d)." %
                         (keys.shape[-1], num_heads))
    if values.shape[-1] % num_heads != 0:
        raise ValueError("The hidden size of values (%d) must be divisible "
                         "by the number of attention heads (%d)." %
                         (values.shape[-1], num_heads))

Y
ying 已提交
242
    def __compute_qkv(queries, keys, values, num_heads):
Y
ying 已提交
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
        """
        Add linear projection to queries, keys, and values.

        Args:
            queries(Tensor): a 3-D input Tensor.
            keys(Tensor): a 3-D input Tensor.
            values(Tensor): a 3-D input Tensor.
            num_heads(int): The number of heads. Linearly project the inputs
                            ONLY when num_heads > 1.

        Returns:
            Tensor: linearly projected output Tensors: queries', keys' and
                    values'. They have the same shapes with queries, keys and
                    values.
        """

Y
ying 已提交
259 260 261 262 263 264 265 266
        if num_heads == 1:
            return queries, keys, values

        q = layers.fc(input=queries, size=queries.shape[-1], num_flatten_dims=2)
        k = layers.fc(input=keys, size=keys.shape[-1], num_flatten_dims=2)
        v = layers.fc(input=values, size=values.shape[-1], num_flatten_dims=2)
        return q, k, v

Y
ying 已提交
267 268 269 270 271 272
    def __split_heads(x, num_heads):
        """
        Reshape the last dimension of inpunt tensor x so that it becomes two
        dimensions.

        Args:
Y
ying 已提交
273 274
            x(Tensor): a 3-D input Tensor.
            num_heads(int): The number of heads.
Y
ying 已提交
275 276

        Returns:
Y
ying 已提交
277 278
            Tensor: a Tensor with shape [..., n, m/num_heads], where m is size
                    of the last dimension of x.
Y
ying 已提交
279
        """
Y
ying 已提交
280 281
        if num_heads == 1:
            return x
282

Y
ying 已提交
283
        hidden_size = x.shape[-1]
284 285 286
        # reshape the 3-D input: [batch_size, max_sequence_length, hidden_dim]
        # into a 4-D output:
        # [batch_size, max_sequence_length, num_heads, hidden_size_per_head].
Y
ying 已提交
287
        reshaped = layers.reshape(
288 289
            x=x,
            shape=list(x.shape[:-1]) + [num_heads, hidden_size // num_heads])
290 291

        # permuate the dimensions into:
292 293 294 295
        # [batch_size, num_heads, max_sequence_len, hidden_size_per_head]
        return layers.transpose(x=reshaped, perm=[0, 2, 1, 3])

    def __combine_heads(x):
Y
ying 已提交
296 297 298 299 300 301 302 303 304 305 306 307 308
        """
        Reshape the last two dimensions of inpunt tensor x so that it becomes
        one dimension.

        Args:
            x(Tensor): a 4-D input Tensor with shape
                       [bs, num_heads, max_sequence_length, hidden_dim].

        Returns:
            Tensor: a Tensor with shape
                    [bs, max_sequence_length, num_heads * hidden_dim].
        """

309 310 311 312
        if len(x.shape) == 3: return
        if len(x.shape) != 4:
            raise ValueError("Input(x) should be a 4-D Tensor.")

Y
ying 已提交
313
        trans_x = layers.transpose(x, perm=[0, 2, 1, 3])
Y
ying 已提交
314
        return layers.reshape(
315
            x=trans_x,
Y
ying 已提交
316 317 318 319
            shape=map(int, [
                trans_x.shape[0], trans_x.shape[1],
                trans_x.shape[2] * trans_x.shape[3]
            ]))
320

Y
ying 已提交
321 322 323 324 325
    q, k, v = __compute_qkv(queries, keys, values, num_heads)

    q = __split_heads(q, num_heads)
    k = __split_heads(k, num_heads)
    v = __split_heads(v, num_heads)
Y
ying 已提交
326 327

    key_dim_per_head = keys.shape[-1] // num_heads
328 329
    scaled_q = layers.scale(x=q, scale=key_dim_per_head**-0.5)
    product = layers.matmul(x=k, y=scaled_q, transpose_y=True)
Y
ying 已提交
330

Y
ying 已提交
331
    weights = layers.reshape(
332
        x=layers.reshape(
Y
ying 已提交
333
            x=product, shape=[-1, product.shape[-1]], act="softmax"),
334
        shape=product.shape)
Y
ying 已提交
335 336 337 338
    if dropout_rate:
        weights = layers.dropout(x, dropout_prob=dropout_rate, is_test=False)
    ctx_multiheads = layers.matmul(weights, v)
    return __combine_heads(ctx_multiheads)