test_sequence_expand.py 4.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

W
wanghaoshuang 已提交
17 18
import unittest
import numpy as np
19
from op_test import OpTest
W
wanghaoshuang 已提交
20 21


W
wanghaoshuang 已提交
22
class TestSequenceExpand(OpTest):
W
wanghaoshuang 已提交
23
    def set_data(self):
D
dzhwinter 已提交
24 25
        x_data = np.random.uniform(0.1, 1, [3, 1]).astype('float32')
        y_data = np.random.uniform(0.1, 1, [8, 1]).astype('float32')
26
        y_lod = [[1, 3, 4]]
W
wanghaoshuang 已提交
27
        self.inputs = {'X': x_data, 'Y': (y_data, y_lod)}
W
wanghaoshuang 已提交
28 29

    def compute(self):
W
wanghaoshuang 已提交
30 31
        x = self.inputs['X']
        x_data, x_lod = x if type(x) == tuple else (x, None)
W
wanghaoshuang 已提交
32
        y_data, y_lod = self.inputs['Y']
Y
yangyaming 已提交
33 34 35 36 37 38 39 40 41

        if hasattr(self, 'attrs'):
            ref_level = self.attrs['ref_level']
        else:
            ref_level = len(y_lod) - 1

        out = np.zeros(shape=((0, ) + x_data.shape[1:]), dtype=x_data.dtype)

        if x_lod is None:
42 43
            # x_idx = [i for i in xrange(x_data.shape[0] + 1)]
            x_idx = [1] * x_data.shape[0]
Y
yangyaming 已提交
44 45
        else:
            x_idx = x_lod[0]
46 47 48
            out_lod = [[]]

        offset = 0
49
        for i in range(len(y_lod[ref_level])):
50 51
            repeat_num = y_lod[ref_level][i]
            x_len = x_idx[i]
Y
yangyaming 已提交
52 53

            if repeat_num > 0:
54
                x_sub = x_data[offset:(offset + x_len), :]
D
dzhwinter 已提交
55 56 57 58
                stacked_x_sub = x_sub
                for r in range(repeat_num - 1):
                    stacked_x_sub = np.vstack((stacked_x_sub, x_sub))
                out = np.vstack((out, stacked_x_sub))
Y
yangyaming 已提交
59
                if x_lod is not None:
60
                    for j in range(repeat_num):
61 62
                        out_lod[0].append(x_len)
            offset += x_len
Y
yangyaming 已提交
63 64 65 66 67

        if x_lod is None:
            self.outputs = {'Out': out}
        else:
            self.outputs = {'Out': (out, out_lod)}
W
wanghaoshuang 已提交
68 69

    def setUp(self):
S
sneaxiy 已提交
70
        self.test_gc = True
W
wanghaoshuang 已提交
71
        self.op_type = 'sequence_expand'
W
wanghaoshuang 已提交
72 73 74 75 76 77
        self.set_data()
        self.compute()

    def test_check_output(self):
        self.check_output()

W
wanghaoshuang 已提交
78 79
    def test_check_grad(self):
        self.check_grad(["X"], "Out")
W
wanghaoshuang 已提交
80 81


W
wanghaoshuang 已提交
82
class TestSequenceExpandCase1(TestSequenceExpand):
W
wanghaoshuang 已提交
83 84 85
    def set_data(self):
        x_data = np.random.uniform(0.1, 1, [5, 1]).astype('float32')
        y_data = np.random.uniform(0.1, 1, [13, 1]).astype('float32')
86
        y_lod = [[2, 3], [2, 2, 3, 3, 3]]
Y
yangyaming 已提交
87
        self.inputs = {'X': x_data, 'Y': (y_data, y_lod)}
88
        self.attrs = {'ref_level': 1}
W
wanghaoshuang 已提交
89 90


W
wanghaoshuang 已提交
91
class TestSequenceExpandCase2(TestSequenceExpand):
W
wanghaoshuang 已提交
92 93
    def set_data(self):
        x_data = np.random.uniform(0.1, 1, [1, 2, 2]).astype('float32')
94
        x_lod = [[1]]
W
wanghaoshuang 已提交
95
        y_data = np.random.uniform(0.1, 1, [2, 2, 2]).astype('float32')
96
        y_lod = [[2], [1, 1]]
W
wanghaoshuang 已提交
97
        self.inputs = {'X': (x_data, x_lod), 'Y': (y_data, y_lod)}
Y
yangyaming 已提交
98
        self.attrs = {'ref_level': 0}
W
wanghaoshuang 已提交
99 100


W
wanghaoshuang 已提交
101
class TestSequenceExpandCase3(TestSequenceExpand):
W
wanghaoshuang 已提交
102 103
    def set_data(self):
        x_data = np.random.uniform(0.1, 1, [4, 1]).astype('float32')
104 105 106
        x_lod = [[1, 1, 1, 1]]
        y_data = np.random.uniform(0.1, 1, [8, 1]).astype('float32')
        y_lod = [[2, 2, 2, 2]]
W
wanghaoshuang 已提交
107 108 109
        self.inputs = {'X': (x_data, x_lod), 'Y': (y_data, y_lod)}


110 111
class TestSequenceExpandCase4(TestSequenceExpand):
    def set_data(self):
D
dzhwinter 已提交
112
        data = np.random.uniform(0.1, 1, [5 * 2, 1])
Y
yangyaming 已提交
113
        x_data = np.array(data).reshape([5, 2]).astype('float32')
114 115 116
        x_lod = [[2, 3]]
        y_data = np.random.uniform(0.1, 1, [5, 1]).astype('float32')
        y_lod = [[2], [2, 3]]
117 118 119
        self.inputs = {'X': (x_data, x_lod), 'Y': (y_data, y_lod)}


120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
class TestSequenceExpandCase5(TestSequenceExpand):
    def set_data(self):
        x_data = np.random.uniform(0.1, 1, [6, 1]).astype('float32')
        y_data = np.random.uniform(0.1, 1, [13, 1]).astype('float32')
        y_lod = [[2, 4], [2, 2, 3, 0, 3, 3]]
        self.inputs = {'X': x_data, 'Y': (y_data, y_lod)}
        self.attrs = {'ref_level': 1}


class TestSequenceExpandCase6(TestSequenceExpand):
    def set_data(self):
        x_data = np.random.uniform(0.1, 1, [4, 1]).astype('float32')
        x_lod = [[1, 1, 0, 1, 1]]
        y_data = np.random.uniform(0.1, 1, [8, 1]).astype('float32')
        y_lod = [[0, 2, 4, 2, 0]]
        self.inputs = {'X': (x_data, x_lod), 'Y': (y_data, y_lod)}


W
wanghaoshuang 已提交
138 139
if __name__ == '__main__':
    unittest.main()