AverageLayer.cpp 5.2 KB
Newer Older
Z
zhangjinchao01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */


#include "AverageLayer.h"

#include "paddle/utils/Logging.h"

#include "paddle/utils/Stat.h"

namespace paddle {

REGISTER_LAYER(average, AverageLayer);

bool AverageLayer::init(const LayerMap& layerMap,
                        const ParameterMap& parameterMap) {
  /* Initialize the basic parent class */
  Layer::init(layerMap, parameterMap);

  /* initialize biases_ */
  if (biasParameter_.get() != NULL) {
    biases_ = std::unique_ptr<Weight>(new Weight(1, getSize(), biasParameter_));
  }
  dataMtx_ = Matrix::create(nullptr, 1, 1, false, useGpu_);
  outMtx_ = Matrix::create(nullptr, 1, getSize(), false, useGpu_);
  // average strategy
  if (config_.average_strategy() == "average") {
    mode_ = kAverage;
  } else if (config_.average_strategy() == "sum") {
    mode_ = kSum;
  } else if (config_.average_strategy() == "squarerootn") {
    mode_ = kAverageSquareRootN;
  } else {
    LOG(FATAL) << "Unknown average strategy: " << config_.average_strategy();
  }
  // transform to which sequence type
  if (config_.trans_type() == "non-seq") {
    type_ = kNonSeq;
  } else if (config_.trans_type() == "seq") {
    type_ = kSeq;
  } else {
    LOG(FATAL) << "Unknown trans_type: " << config_.trans_type();
  }
  setNeedSequenceInfo(false);
  return true;
}

void AverageLayer::forward(PassType passType) {
  Layer::forward(passType);

  // average layer should have exactly 1 input
  CHECK_EQ(1U, inputLayers_.size());

  size_t dim = getSize();
  const Argument& input = getInput(0);
67 68 69 70 71
  CHECK(input.sequenceStartPositions);
  if (type_) {
    CHECK(input.subSequenceStartPositions)
      << "when trans_type = seq, input must hasSubseq";
  }
Z
zhangjinchao01 已提交
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
  int64_t newBatchSize =
      type_ ? input.getNumSubSequences() : input.getNumSequences();
  ICpuGpuVectorPtr startPositions =
      type_ ? input.subSequenceStartPositions
            : input.sequenceStartPositions;
  const int* starts = startPositions->getData(false);
  size_t numSequences = startPositions->getSize() - 1;

  // check
  CHECK_EQ(numSequences, (size_t)newBatchSize);
  CHECK_EQ(starts[numSequences], input.getBatchSize());
  CHECK_EQ(dim, input.value->getWidth());

  resetOutput(newBatchSize, dim);
  auto startsPos = startPositions->getVector(useGpu_);
  MatrixPtr inputValue = getInputValue(0);
  getOutputValue()->sequenceAvgForward(*inputValue, *startsPos, mode_);

  /* If type_ = kNonSeq, both seq has or not has sub-seq degrade to a non-seq,
   * thus, in this case, output_ has no sequenceStartPositions.
   * If type_ = kSeq, seq has sub-seq degrades to a seq, thus, only in this
   * case, we should compute the new sequenceStartPositions.
  */
  if (type_) {
    output_.degradeSequence(input, useGpu_);
  }

  /* add the bias-vector AFTER average operation */
  if (biases_.get() != NULL) {
    MatrixPtr outV = getOutputValue();
    outV->addBias(*(biases_->getW()), 1);
  }

  /* activation */ { forwardActivation(); }
}

void AverageLayer::backward(const UpdateCallback& callback) {
  const Argument& input = getInput(0);
  ICpuGpuVectorPtr startPositions =
      type_ ? input.subSequenceStartPositions
            : input.sequenceStartPositions;
  const int* starts = startPositions->getData(false);
  /* Do derivation */ { backwardActivation(); }

  if (biases_ && biases_->getWGrad()) {
    biases_->getWGrad()->collectBias(*getOutputGrad(), 1);

    // Increasing the number of gradient
    biases_->getParameterPtr()->incUpdate(callback);
  }

  MatrixPtr grad = getInputGrad(0);
  if (grad) {
    size_t dim = getSize();
    real* gradientData = getInputGrad(0)->getData();
    real* gradient = getOutputGrad()->getData();
    size_t numSequences = startPositions->getSize() - 1;
    for (size_t sequenceId = 0; sequenceId < numSequences; ++sequenceId) {
      // TODO(Dangqingqing) optimization for GPU
      int sequenceLength = starts[sequenceId + 1] - starts[sequenceId];
      if (0 == sequenceLength) {
        // empty sequence
        continue;
      }
      dataMtx_->setData(gradientData + starts[sequenceId] * dim, sequenceLength,
                        dim);
      outMtx_->setData(gradient + sequenceId * dim);
      switch (mode_) {
        case kAverage: {
          // plain average
          dataMtx_->addBias(*outMtx_, 1.0f / sequenceLength);
          break;
        }
        case kSum: {
          // sum instead of average
          dataMtx_->addBias(*outMtx_, 1.0f);
          break;
        }
        case kAverageSquareRootN: {
          // divide by square root of sequenceLength
          dataMtx_->addBias(*outMtx_, 1.0f / sqrt(sequenceLength));
          break;
        }
        default: { LOG(FATAL) << "should not reach here"; }
      }
    }
  }
}

}  // namespace paddle