cpu_quantize_pass.cc 22.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include "paddle/fluid/framework/ir/mkldnn/cpu_quantize_pass.h"
16
#include <limits>
17 18 19
#include <utility>
#include <vector>
#include "paddle/fluid/framework/eigen.h"
M
Michał Gallus 已提交
20
#include "paddle/fluid/platform/errors.h"
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
#include "paddle/fluid/string/pretty_log.h"

namespace paddle {
namespace framework {
namespace ir {

namespace {

void UnlinkNodes(ir::Node* a, ir::Node* b) {
  a->outputs.erase(std::remove(a->outputs.begin(), a->outputs.end(), b),
                   a->outputs.end());
  b->inputs.erase(std::remove(b->inputs.begin(), b->inputs.end(), a),
                  b->inputs.end());
}

}  // namespace

enum { U8_MAX = 255, S8_MAX = 127 };

using EigenVectorArrayMap = Eigen::Map<Eigen::Array<double, Eigen::Dynamic, 1>>;
using string::PrettyLogDetail;

void CPUQuantizePass::QuantizeInput(Graph* g, Node* op, Node* input,
                                    std::string input_name, double scale_to_one,
                                    bool is_unsigned,
                                    std::string scale_attr_name) const {
M
Michał Gallus 已提交
47 48 49 50 51 52 53
  auto inputs = op->Op()->InputNames();
  bool name_found =
      std::find(inputs.begin(), inputs.end(), input_name) != inputs.end();
  PADDLE_ENFORCE_EQ(
      name_found, true,
      platform::errors::InvalidArgument("%s isn't the input of the %s operator",
                                        input_name, op->Op()->Type()));
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
  unsigned max = is_unsigned ? U8_MAX : S8_MAX;
  float scale = scale_to_one * max;

  // Create quantize output variable
  VarDesc quantize_out_desc(patterns::PDNodeName("quantize", "out"));
  auto* quantize_out_node = g->CreateVarNode(&quantize_out_desc);

  // create a quantize op node
  OpDesc q_desc;
  q_desc.SetType("quantize");
  q_desc.SetInput("Input", std::vector<std::string>({input->Name()}));
  q_desc.SetOutput("Output",
                   std::vector<std::string>({quantize_out_node->Name()}));
  q_desc.SetAttr("Scale", scale);
  q_desc.SetAttr("is_negative_input", !is_unsigned);
69 70 71

  q_desc.SetAttr("output_format",
                 Has("data_layout") ? Get<std::string>("data_layout") : "NHWC");
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
  auto quantize_op = g->CreateOpNode(&q_desc);  // OpDesc will be copied.

  // update op's input
  op->Op()->SetInput(input_name,
                     std::vector<std::string>({quantize_out_node->Name()}));

  // link quantize op
  UnlinkNodes(input, op);
  IR_NODE_LINK_TO(input, quantize_op);
  IR_NODE_LINK_TO(quantize_op, quantize_out_node);
  IR_NODE_LINK_TO(quantize_out_node, op);

  if (!scale_attr_name.empty()) op->Op()->SetAttr(scale_attr_name, scale);
}

87
void CPUQuantizePass::QuantizeInputs(Graph* g, Node* op, std::string input_name,
88
                                     bool are_unsigned,
89 90
                                     std::string scale_attr_name) const {
  auto inputs = op->inputs;
91
  auto output = op->outputs[0];
92
  PADDLE_ENFORCE_GE(inputs.size(), 1);
93
  PADDLE_ENFORCE_EQ(op->outputs.size(), 1);
94 95 96 97 98 99 100 101

  // create a quantize op desc prototype
  OpDesc q_desc;
  q_desc.SetType("quantize");

  std::vector<Node*> quantize_out_nodes(inputs.size());
  std::vector<std::string> quantize_out_node_names(inputs.size());

102
  double scale_out = GetScaleValueForNode(output);
103
  unsigned max = are_unsigned ? U8_MAX : S8_MAX;
104
  float scale = scale_out * max;
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131

  for (size_t i = 0; i < inputs.size(); i++) {
    // Create quantize output variable
    VarDesc quantize_out_desc(patterns::PDNodeName("quantize", "out"));
    quantize_out_nodes[i] = g->CreateVarNode(&quantize_out_desc);
    quantize_out_node_names[i] = quantize_out_nodes[i]->Name();

    q_desc.SetAttr("Scale", scale);
    q_desc.SetInput("Input", std::vector<std::string>({inputs[i]->Name()}));
    q_desc.SetOutput("Output",
                     std::vector<std::string>({quantize_out_node_names[i]}));
    q_desc.SetAttr("is_negative_input", !are_unsigned);
    auto quantize_op = g->CreateOpNode(&q_desc);  // OpDesc will be copied.

    // link quantize op
    UnlinkNodes(inputs[i], op);
    IR_NODE_LINK_TO(inputs[i], quantize_op);
    IR_NODE_LINK_TO(quantize_op, quantize_out_nodes[i]);
    IR_NODE_LINK_TO(quantize_out_nodes[i], op);
  }

  // update op's input
  op->Op()->SetInput(input_name, quantize_out_node_names);

  if (!scale_attr_name.empty()) op->Op()->SetAttr(scale_attr_name, scale);
}

132 133 134 135
void CPUQuantizePass::DequantizeOutput(Graph* g, Node* op, Node* output,
                                       std::string output_name,
                                       double scale_to_one, bool is_unsigned,
                                       std::string scale_attr_name) const {
M
Michał Gallus 已提交
136 137 138 139 140 141 142
  auto outputs = op->Op()->OutputNames();
  bool name_found =
      std::find(outputs.begin(), outputs.end(), output_name) != outputs.end();
  PADDLE_ENFORCE_EQ(name_found, true,
                    platform::errors::InvalidArgument(
                        "%s isn't the output of the %s operator", output_name,
                        op->Op()->Type()));
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
  unsigned max = is_unsigned ? U8_MAX : S8_MAX;
  float scale = scale_to_one * max;

  // Create dequantize input variable
  VarDesc dequantize_in_desc(patterns::PDNodeName("dequantize", "in"));
  auto* dequantize_in_node = g->CreateVarNode(&dequantize_in_desc);

  // create a dequantize op node for output.
  OpDesc deq_desc;
  deq_desc.SetType("dequantize");
  deq_desc.SetInput("Input",
                    std::vector<std::string>({dequantize_in_node->Name()}));
  deq_desc.SetOutput("Output", std::vector<std::string>({output->Name()}));
  deq_desc.SetAttr("Scale", scale);
  auto dequantize_op = g->CreateOpNode(&deq_desc);  // OpDesc will be copied.

  // update op's output
  op->Op()->SetOutput(output_name,
                      std::vector<std::string>({dequantize_in_node->Name()}));

  // link dequantize op
  UnlinkNodes(op, output);
  IR_NODE_LINK_TO(op, dequantize_in_node);
  IR_NODE_LINK_TO(dequantize_in_node, dequantize_op);
  IR_NODE_LINK_TO(dequantize_op, output);

  if (!scale_attr_name.empty()) op->Op()->SetAttr(scale_attr_name, scale);
}

172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
std::pair<bool, LoDTensor> CPUQuantizePass::GetScaleDataForNode(
    const Node* node) const {
  auto& scales = Get<VarQuantScale>("quant_var_scales");
  PADDLE_ENFORCE_EQ(
      scales.count(node->Name()), 1,
      platform::errors::InvalidArgument(
          "Quantization scale for the variable %s is missing.", node->Name()));
  return scales[node->Name()];
}

LoDTensor CPUQuantizePass::GetScaleTensorForNode(const Node* node) const {
  return GetScaleDataForNode(node).second;
}

double CPUQuantizePass::GetScaleValueForNode(const Node* node,
                                             bool* is_unsigned) const {
  auto scale_data = GetScaleDataForNode(node);
  if (is_unsigned != nullptr) *is_unsigned = scale_data.first;
  return scale_data.second.data<double>()[0];
}

193 194 195 196 197 198 199 200 201 202
bool CPUQuantizePass::IsOpDequantized(const Node* node) const {
  return node->Op()->Type() == "dequantize" ||
         node->Op()->GetAttrIfExists<bool>("use_quantizer");
}

bool CPUQuantizePass::IsOpQuantized(const Node* node) const {
  return node->Op()->Type() == "quantize" ||
         node->Op()->GetAttrIfExists<bool>("use_quantizer");
}

203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
void CPUQuantizePass::QuantizeConv(Graph* graph,
                                   bool with_residual_data) const {
  GraphPatternDetector gpd;
  auto pattern = gpd.mutable_pattern();
  patterns::ConvResidual conv_pattern{pattern, name_scope_};
  conv_pattern(with_residual_data);

  int quantize_conv_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize conv2d op";
    GET_IR_NODE_FROM_SUBGRAPH(conv_op, conv_op, conv_pattern);
    auto* conv_op_desc = conv_op->Op();

    // skip if should not be quantized
218
    if (!conv_op_desc->GetAttrIfExists<bool>("use_quantizer")) return;
219 220 221 222 223

    GET_IR_NODE_FROM_SUBGRAPH(conv_filter, conv_filter, conv_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(conv_input, conv_input, conv_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(conv_output, conv_output, conv_pattern);

224 225
    bool is_input_unsigned{false};
    auto input_scale = GetScaleValueForNode(conv_input, &is_input_unsigned);
226 227 228
    QuantizeInput(g, conv_op, conv_input, "Input", input_scale,
                  is_input_unsigned, "Scale_in");

229
    auto filter_scale_tensor = GetScaleTensorForNode(conv_filter);
230 231 232 233 234 235 236 237 238 239 240 241
    EigenVectorArrayMap eigen_tensor{filter_scale_tensor.data<double>(),
                                     filter_scale_tensor.numel(), 1};
    eigen_tensor *= static_cast<double>(S8_MAX);
    std::vector<float> filter_scale{
        filter_scale_tensor.data<double>(),
        filter_scale_tensor.data<double>() + filter_scale_tensor.numel()};

    conv_op->Op()->SetAttr("Scale_weights", filter_scale);

    if (with_residual_data) {
      GET_IR_NODE_FROM_SUBGRAPH(conv_residual_data, conv_residual_data,
                                conv_pattern);
242
      bool is_residual_unsigned{false};
243
      auto residual_scale =
244
          GetScaleValueForNode(conv_residual_data, &is_residual_unsigned);
245 246 247 248 249

      QuantizeInput(g, conv_op, conv_residual_data, "ResidualData",
                    residual_scale, is_residual_unsigned, "Scale_in_eltwise");
    }

250 251
    bool is_output_unsigned{false};
    auto output_scale = GetScaleValueForNode(conv_output, &is_output_unsigned);
252 253 254
    DequantizeOutput(g, conv_op, conv_output, "Output", output_scale,
                     is_output_unsigned, "Scale_out");

255
    // change threshold in bounded ReLu
256 257
    if (conv_op->Op()->GetAttrIfExists<std::string>("fuse_activation") ==
        "relu6") {
258
      float scale_out = boost::get<float>(conv_op->Op()->GetAttr("Scale_out"));
259 260
      float threshold = boost::get<float>(conv_op->Op()->GetAttr("fuse_alpha"));
      conv_op->Op()->SetAttr("fuse_alpha", scale_out * threshold);
261 262
    }

263 264 265 266 267 268 269 270 271 272 273 274
    ++quantize_conv_count;
  };

  gpd(graph, handler);
  AddStatis(quantize_conv_count);

  std::stringstream msg_ss;
  msg_ss << "---    quantized " << quantize_conv_count << " conv2d ops";
  if (with_residual_data) msg_ss << " with residual connection";
  PrettyLogDetail(msg_ss.str().c_str());
}

M
Michał Gallus 已提交
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
void CPUQuantizePass::QuantizeFc(Graph* graph) const {
  GraphPatternDetector gpd;
  auto pattern = gpd.mutable_pattern();
  patterns::FCMKLDNN fc_pattern{pattern, name_scope_};
  auto* fc_input = gpd.mutable_pattern()
                       ->NewNode("fc_quantizer/input")
                       ->AsInput()
                       ->assert_is_op_input("fc", "Input");
  fc_pattern(fc_input, false);

  int quantize_fc_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize fc op";
    GET_IR_NODE_FROM_SUBGRAPH(fc, fc, fc_pattern);
    auto* fc_op_desc = fc->Op();

    // skip if should not be quantized
    if (fc_op_desc->GetAttrIfExists<bool>("use_quantizer") != true ||
        fc_op_desc->GetAttrIfExists<bool>("use_mkldnn") != true)
      return;

    GET_IR_NODE_FROM_SUBGRAPH(weights, weights, fc_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(input, input, fc_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(output, output, fc_pattern);

301 302
    bool is_input_unsigned{false};
    auto input_scale = GetScaleValueForNode(input, &is_input_unsigned);
M
Michał Gallus 已提交
303 304 305
    QuantizeInput(g, fc, input, "Input", input_scale, is_input_unsigned,
                  "Scale_in");

306
    auto weight_scale_tensor = GetScaleTensorForNode(weights);
M
Michał Gallus 已提交
307 308 309 310 311 312 313 314 315
    EigenVectorArrayMap eigen_tensor{weight_scale_tensor.data<double>(),
                                     weight_scale_tensor.numel(), 1};
    eigen_tensor *= static_cast<double>(S8_MAX);
    std::vector<float> filter_scale{
        weight_scale_tensor.data<double>(),
        weight_scale_tensor.data<double>() + weight_scale_tensor.numel()};

    fc->Op()->SetAttr("Scale_weights", filter_scale);

316 317
    bool is_output_unsigned{false};
    auto output_scale = GetScaleValueForNode(output, &is_output_unsigned);
M
Michał Gallus 已提交
318 319 320 321 322 323 324 325 326 327 328 329 330 331
    DequantizeOutput(g, fc, output, "Out", output_scale, is_output_unsigned,
                     "Scale_out");

    ++quantize_fc_count;
  };

  gpd(graph, handler);
  AddStatis(quantize_fc_count);

  std::stringstream msg_ss;
  msg_ss << "---    quantized " << quantize_fc_count << " fc ops";
  PrettyLogDetail(msg_ss.str().c_str());
}

332 333 334 335 336 337 338 339 340 341 342 343 344 345
void CPUQuantizePass::QuantizePool(Graph* graph) const {
  GraphPatternDetector gpd;
  auto pattern = gpd.mutable_pattern();
  patterns::Pool pool_pattern{pattern, name_scope_};
  pool_pattern();

  int quantize_pool_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize pool2d op";
    GET_IR_NODE_FROM_SUBGRAPH(pool_op, pool_op, pool_pattern);
    auto* pool_op_desc = pool_op->Op();

    // skip if should not be quantized
346
    if (!pool_op_desc->GetAttrIfExists<bool>("use_quantizer")) return;
347 348 349 350

    GET_IR_NODE_FROM_SUBGRAPH(pool_input, pool_input, pool_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(pool_output, pool_output, pool_pattern);

351 352
    bool is_input_unsigned{false};
    auto input_scale = GetScaleValueForNode(pool_input, &is_input_unsigned);
353 354
    QuantizeInput(g, pool_op, pool_input, "X", input_scale, is_input_unsigned);

355 356
    bool is_output_unsigned{false};
    auto output_scale = GetScaleValueForNode(pool_output, &is_output_unsigned);
357 358 359 360 361 362 363 364 365 366 367 368
    DequantizeOutput(g, pool_op, pool_output, "Out", output_scale,
                     is_output_unsigned);

    ++quantize_pool_count;
  };

  gpd(graph, handler);
  AddStatis(quantize_pool_count);

  PrettyLogDetail("---    quantized %d pool2d ops", quantize_pool_count);
}

369 370 371 372 373 374 375 376 377 378 379 380 381 382
void CPUQuantizePass::QuantizeConcat(Graph* graph) const {
  GraphPatternDetector gpd;
  auto pattern = gpd.mutable_pattern();
  patterns::Concat concat_pattern{pattern, name_scope_};
  concat_pattern();

  int quantize_concat_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize concat op";
    GET_IR_NODE_FROM_SUBGRAPH(concat_op, concat_op, concat_pattern);
    auto* concat_op_desc = concat_op->Op();

    // skip if should not be quantized
383
    if (!concat_op_desc->GetAttrIfExists<bool>("use_quantizer")) return;
384 385 386 387 388

    GET_IR_NODE_FROM_SUBGRAPH(concat_out, concat_out, concat_pattern);

    // if all inputs were unsigned, then the output was set to unsigned
    // during the scale calculation step
389 390 391
    bool are_all_inputs_unsigned{false};
    auto output_scale =
        GetScaleValueForNode(concat_out, &are_all_inputs_unsigned);
392

393
    QuantizeInputs(g, concat_op, "X", are_all_inputs_unsigned);
394 395 396 397 398 399 400 401 402 403 404 405 406

    DequantizeOutput(g, concat_op, concat_out, "Out", output_scale,
                     are_all_inputs_unsigned);

    ++quantize_concat_count;
  };

  gpd(graph, handler);
  AddStatis(quantize_concat_count);

  PrettyLogDetail("---    quantized %d concat ops", quantize_concat_count);
}

407 408 409 410 411 412 413 414 415 416 417 418 419 420
void CPUQuantizePass::QuantizePriorBox(Graph* graph) const {
  GraphPatternDetector gpd;
  auto pattern = gpd.mutable_pattern();
  patterns::PriorBox prior_box_pattern{pattern, name_scope_};
  prior_box_pattern();

  int quantize_prior_box_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize prior_box op";
    GET_IR_NODE_FROM_SUBGRAPH(prior_box_op, prior_box_op, prior_box_pattern);
    auto* prior_box_op_desc = prior_box_op->Op();

    // skip if should not be quantized
421
    if (!prior_box_op_desc->GetAttrIfExists<bool>("use_quantizer")) return;
422 423 424 425

    GET_IR_NODE_FROM_SUBGRAPH(prior_box_input, prior_box_input,
                              prior_box_pattern);

426 427 428
    bool is_input_unsigned{false};
    auto input_scale =
        GetScaleValueForNode(prior_box_input, &is_input_unsigned);
429 430 431 432 433 434 435 436 437 438 439 440 441
    QuantizeInput(g, prior_box_op, prior_box_input, "Input", input_scale,
                  is_input_unsigned);

    ++quantize_prior_box_count;
  };

  gpd(graph, handler);
  AddStatis(quantize_prior_box_count);

  PrettyLogDetail("---    quantized %d prior_box ops",
                  quantize_prior_box_count);
}

442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
void CPUQuantizePass::QuantizeTranspose(Graph* graph) const {
  GraphPatternDetector gpd;
  auto pattern = gpd.mutable_pattern();
  patterns::Transpose transpose_pattern{pattern, name_scope_};
  transpose_pattern();

  int quantize_transpose_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize transpose op";
    GET_IR_NODE_FROM_SUBGRAPH(transpose_op, transpose_op, transpose_pattern);
    auto* transpose_op_desc = transpose_op->Op();

    // skip if should not be quantized
    if (!transpose_op_desc->GetAttrIfExists<bool>("use_quantizer")) {
      return;
    }
    GET_IR_NODE_FROM_SUBGRAPH(prev_op, prev_op, transpose_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(next_op, next_op, transpose_pattern);

462 463
    // skip if prev op and next op is not quantized
    if (!(IsOpDequantized(prev_op)) && !(IsOpQuantized(next_op))) {
464 465 466 467 468
      return;
    }
    GET_IR_NODE_FROM_SUBGRAPH(transpose_in, transpose_in, transpose_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(transpose_out, transpose_out, transpose_pattern);

469 470
    bool is_input_unsigned{false};
    auto input_scale = GetScaleValueForNode(transpose_in, &is_input_unsigned);
471 472 473
    QuantizeInput(g, transpose_op, transpose_in, "X", input_scale,
                  is_input_unsigned);

474 475 476
    bool is_output_unsigned{false};
    auto output_scale =
        GetScaleValueForNode(transpose_out, &is_output_unsigned);
477 478 479 480 481 482 483 484 485 486 487 488 489
    DequantizeOutput(g, transpose_op, transpose_out, "Out", output_scale,
                     is_output_unsigned);

    ++quantize_transpose_count;
  };

  gpd(graph, handler);
  AddStatis(quantize_transpose_count);

  PrettyLogDetail("---    quantized %d transpose ops",
                  quantize_transpose_count);
}

490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
void CPUQuantizePass::QuantizeReshape(Graph* graph) const {
  GraphPatternDetector gpd;
  auto pattern = gpd.mutable_pattern();
  patterns::Reshape reshape_pattern{pattern, name_scope_};
  reshape_pattern();

  int quantize_reshape_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize reshape op";
    GET_IR_NODE_FROM_SUBGRAPH(reshape_op, reshape_op, reshape_pattern);
    auto* reshape_op_desc = reshape_op->Op();

    // skip if should not be quantized
    if (!reshape_op_desc->GetAttrIfExists<bool>("use_quantizer")) {
      return;
    }
    GET_IR_NODE_FROM_SUBGRAPH(prev_op, prev_op, reshape_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(next_op, next_op, reshape_pattern);

510 511
    // skip if prev op and next op is not quantized
    if (!(IsOpDequantized(prev_op)) && !(IsOpQuantized(next_op))) {
512 513 514 515 516 517
      return;
    }

    GET_IR_NODE_FROM_SUBGRAPH(reshape_in, reshape_in, reshape_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(reshape_out, reshape_out, reshape_pattern);

518 519
    bool is_input_unsigned{false};
    auto input_scale = GetScaleValueForNode(reshape_in, &is_input_unsigned);
520 521 522
    QuantizeInput(g, reshape_op, reshape_in, "X", input_scale,
                  is_input_unsigned);

523 524
    bool is_output_unsigned{false};
    auto output_scale = GetScaleValueForNode(reshape_out, &is_output_unsigned);
525 526 527 528 529 530 531 532 533 534 535 536
    DequantizeOutput(g, reshape_op, reshape_out, "Out", output_scale,
                     is_output_unsigned);

    ++quantize_reshape_count;
  };

  gpd(graph, handler);
  AddStatis(quantize_reshape_count);

  PrettyLogDetail("---    quantized %d reshape ops", quantize_reshape_count);
}

537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
void CPUQuantizePass::QuantizeMatmul(Graph* graph) const {
  GraphPatternDetector gpd;
  auto pattern = gpd.mutable_pattern();
  patterns::Matmul matmul_pattern{pattern, name_scope_};
  matmul_pattern();

  int quantize_matmul_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize matmul op";
    GET_IR_NODE_FROM_SUBGRAPH(matmul_op, matmul_op, matmul_pattern);
    auto* matmul_op_desc = matmul_op->Op();

    // skip if should not be quantized
    if (!matmul_op_desc->GetAttrIfExists<bool>("use_quantizer")) {
      return;
    }
    GET_IR_NODE_FROM_SUBGRAPH(prev_op_x, prev_op_x, matmul_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(prev_op_y, prev_op_y, matmul_pattern);

    // skip if prev ops are not quantized
    if (!IsOpDequantized(prev_op_x) || !IsOpDequantized(prev_op_y)) {
      return;
    }
    GET_IR_NODE_FROM_SUBGRAPH(matmul_in_x, matmul_in_x, matmul_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(matmul_in_y, matmul_in_y, matmul_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(matmul_out, matmul_out, matmul_pattern);

    bool is_x_unsigned{false}, is_y_unsigned{false};
    auto input_x_scale = GetScaleValueForNode(matmul_in_x, &is_x_unsigned);
    auto input_y_scale = GetScaleValueForNode(matmul_in_y, &is_y_unsigned);
    PADDLE_ENFORCE_EQ(
        is_x_unsigned, is_y_unsigned,
        platform::errors::InvalidArgument(
            "Matmul inputs should have the same value of is_unsigned"));
    QuantizeInput(g, matmul_op, matmul_in_x, "X", input_x_scale, is_x_unsigned,
                  "Scale_x");
    QuantizeInput(g, matmul_op, matmul_in_y, "Y", input_y_scale, is_y_unsigned,
                  "Scale_y");

    bool is_output_unsigned{false};
    auto output_scale = GetScaleValueForNode(matmul_out, &is_output_unsigned);
    DequantizeOutput(g, matmul_op, matmul_out, "Out", output_scale,
                     is_output_unsigned, "Scale_out");

    ++quantize_matmul_count;
  };
  gpd(graph, handler);
  AddStatis(quantize_matmul_count);

  PrettyLogDetail("---    quantized %d matmul ops", quantize_matmul_count);
}

590
void CPUQuantizePass::ApplyImpl(ir::Graph* graph) const {
591
  VLOG(3) << "Quantizing the graph.";
592 593
  PADDLE_ENFORCE(graph);
  FusePassBase::Init(name_scope_, graph);
594 595 596

  PADDLE_ENFORCE(param_scope());

597 598 599
  QuantizeConv(graph, false /* with_residual_data */);
  QuantizeConv(graph, true /* with_residual_data */);
  QuantizePool(graph);
600
  QuantizeConcat(graph);
601
  QuantizePriorBox(graph);
602
  QuantizeTranspose(graph);
M
Michał Gallus 已提交
603
  QuantizeFc(graph);
604
  QuantizeReshape(graph);
605
  QuantizeMatmul(graph);
606 607 608 609 610 611 612 613
}

}  // namespace ir
}  // namespace framework
}  // namespace paddle

REGISTER_PASS(cpu_quantize_pass, paddle::framework::ir::CPUQuantizePass)
    .RequirePassAttr("quant_var_scales");