ipu_executor.cc 16.3 KB
Newer Older
J
jianghaicheng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15 16
#include "paddle/fluid/platform/device/ipu/ipu_executor.h"

17 18 19 20
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/platform/device/ipu/ipu_compiler.h"
#include "paddle/fluid/platform/device/ipu/ipu_names.h"
#include "paddle/fluid/platform/device/ipu/ipu_strategy.h"
J
jianghaicheng 已提交
21 22 23 24 25

namespace paddle {
namespace platform {
namespace ipu {

26 27
namespace {

A
Allen Guo 已提交
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
// Get paddle prefix and popart postfix of weight states
// Format: {popart_postfix, paddle_prefix}
std::vector<std::pair<std::string, std::string>> GetOptPrePostfix(
    const std::string &opt_type) {
  std::vector<std::pair<std::string, std::string>> pre_post_fix;
  // Weight self
  pre_post_fix.push_back(std::make_pair("", ""));

  // Weight states
  // TODO(alleng) support pair("Accl1___", "_moment1_{id!=0}")
  if (opt_type == "adam" || opt_type == "lamb" || opt_type == "adamw") {
    pre_post_fix.push_back(std::make_pair("Accl1___", "_moment1_0"));
    pre_post_fix.push_back(std::make_pair("Accl2___", "_moment2_0"));
    pre_post_fix.push_back(std::make_pair("Step___", "_beta1_pow_acc_0"));
  } else if (opt_type == "momentum") {
    pre_post_fix.push_back(std::make_pair("Accl___", "_velocity_0"));
  } else if (opt_type == "adamax") {
    pre_post_fix.push_back(std::make_pair("Accl1___", "_moment_0"));
    pre_post_fix.push_back(std::make_pair("Accl2___", "_inf_norm__0"));
    pre_post_fix.push_back(std::make_pair("Step___", "_beta1_pow_acc_0"));
  } else if (opt_type == "adagrad") {
    pre_post_fix.push_back(std::make_pair("Accl1___", "_moment_0"));
  } else if (opt_type == "adadelta") {
    pre_post_fix.push_back(std::make_pair("Accl1___", "__avg_squared_grad_0"));
    pre_post_fix.push_back(
        std::make_pair("Accl2___", "__avg_squared_update_0"));
  } else if (opt_type == "rmsprop") {
    pre_post_fix.push_back(std::make_pair("Accl1___", "_mean_square_0"));
    pre_post_fix.push_back(std::make_pair("Accl2___", "_mean_grad_0"));
    pre_post_fix.push_back(std::make_pair("Accl3___", "_momentum__0"));
  }
  return pre_post_fix;
}

62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
class PdIArray final : public popart::IArray {
 public:
  explicit PdIArray(const Tensor *tensor) {
    tensor_.ShareDataWith(*tensor);
    for (int i = 0; i < tensor->dims().size(); ++i) {
      shape_.push_back(tensor->dims().at(i));
    }
  }

 public:
  void *data() { return tensor_.data(); }
  popart::DataType dataType() const {
    return PhiDType2PopartDType(tensor_.dtype());
  }
  std::size_t rank() const { return tensor_.dims().size(); }
  int64_t dim(size_t index) const { return tensor_.dims().at(index); }
  std::size_t nelms() const {
    return std::accumulate(shape_.begin(), shape_.end(),
                           static_cast<int64_t>(1), std::multiplies<int64_t>());
  }
  const popart::Shape shape() const { return shape_; }

 private:
  Tensor tensor_;
  std::vector<int64_t> shape_;
};

}  // namespace

91 92 93 94 95 96 97 98
Executor::~Executor() {
  Detach();
  session_.reset();
  executor_resources_.reset();
}

void Executor::Prepare(const std::string &proto) {
  VLOG(10) << "enter Executor::Prepare";
A
Allen Guo 已提交
99
  compile_only_ = GetBoolEnv("IPU_COMPILE_ONLY");
J
jianghaicheng 已提交
100

101 102
  AcquireDevice();
  executor_resources_ = std::make_unique<ExecutorResources>();
J
jianghaicheng 已提交
103 104 105

  auto art = popart::AnchorReturnType("All");
  std::map<popart::TensorId, popart::AnchorReturnType> anchor_ids;
106
  for (const auto &id : compiler_resources_->outputs) {
J
jianghaicheng 已提交
107 108 109 110
    anchor_ids.emplace(id, art);
  }
  auto dataFlow = popart::DataFlow(ipu_strategy_->batches_per_step, anchor_ids);

111
  if (ipu_strategy_->is_training) {
J
jianghaicheng 已提交
112
    VLOG(10) << "Creating TrainingSession from Onnx Model...";
113
    auto optimizer = compiler_resources_->NewOptimizer();
J
jianghaicheng 已提交
114
    session_ = popart::TrainingSession::createFromOnnxModel(
115 116 117
        proto, dataFlow, compiler_resources_->loss_var, *optimizer, device_,
        popart::InputShapeInfo(), ipu_strategy_->popart_options,
        ipu_strategy_->popart_patterns);
J
jianghaicheng 已提交
118 119 120
  } else {
    VLOG(10) << "Creating InferenceSession from Onnx Model...";
    session_ = popart::InferenceSession::createFromOnnxModel(
121 122
        proto, dataFlow, device_, popart::InputShapeInfo(),
        ipu_strategy_->popart_options, ipu_strategy_->popart_patterns);
J
jianghaicheng 已提交
123 124 125
  }
  VLOG(10) << "Creating session from Onnx Model...done";

A
Allen Guo 已提交
126 127 128 129 130 131 132 133 134 135 136 137
  if (compile_only_) {
    LOG(INFO)
        << "Save the offline cache as offline_cache.popart in current path.";
    VLOG(10) << "Compile only...";
    session_->compileAndExport("./offline_cache.popart");
    VLOG(10) << "Compile only...done";
    return;
  } else {
    VLOG(10) << "Preparing session device...";
    session_->prepareDevice();
    VLOG(10) << "Preparing session device...done";
  }
J
jianghaicheng 已提交
138 139 140 141 142 143 144

  SetWeightsIO();

  VLOG(10) << "Copy weights from paddle to popart...";
  WeightsFromPaddle();
  VLOG(10) << "Copy weights from paddle to popart...done";

A
Allen Guo 已提交
145 146 147
  if (ipu_strategy_->random_seed != std::numeric_limits<std::uint64_t>::max()) {
    VLOG(10) << "Setting random seed to: " << ipu_strategy_->random_seed;
    session_->setRandomSeed(ipu_strategy_->random_seed);
J
jianghaicheng 已提交
148 149 150
  }
}

151 152
void Executor::Run(const std::vector<const Tensor *> &inputs,
                   const std::vector<Tensor *> &outputs,
J
jianghaicheng 已提交
153
                   const framework::ExecutionContext &ctx) {
A
Allen Guo 已提交
154 155 156 157 158
  if (compile_only_) {
    LOG(INFO) << "If IPU_COMPILE_ONLY=True, skip exe.run";
    return;
  }

159
  VLOG(10) << "enter Executor::Run";
J
jianghaicheng 已提交
160 161
  // inputs
  std::map<popart::TensorId, popart::IArray &> popart_inputs;
162
  std::map<popart::TensorId, PdIArray> input_wrappers;
J
jianghaicheng 已提交
163
  for (size_t i = 0; i < inputs.size(); i++) {
164
    auto tensor_id = compiler_resources_->inputs[i];
165
    input_wrappers.emplace(tensor_id, PdIArray(inputs[i]));
J
jianghaicheng 已提交
166 167 168 169
    popart_inputs.emplace(tensor_id, input_wrappers.at(tensor_id));
  }
  // anchors
  std::map<popart::TensorId, popart::IArray &> popart_anchors;
170
  std::map<popart::TensorId, PdIArray> anchor_wrappers;
J
jianghaicheng 已提交
171
  for (size_t i = 0; i < outputs.size(); i++) {
172
    auto tensor_id = compiler_resources_->outputs[i];
J
jianghaicheng 已提交
173 174 175 176 177 178 179
    // get dims & dtype from session
    auto fetch_info = session_->getInfo(tensor_id);
    auto output_shape = fetch_info.shape();
    if (ipu_strategy_->batches_per_step > 1) {
      output_shape.insert(output_shape.begin(),
                          ipu_strategy_->batches_per_step);
    }
180 181 182 183 184 185 186 187 188 189
    if (ipu_strategy_->popart_options.enableGradientAccumulation) {
      output_shape.insert(output_shape.begin(),
                          ipu_strategy_->popart_options.accumulationFactor);
    }
    if (ipu_strategy_->popart_options.enableReplicatedGraphs) {
      output_shape.insert(output_shape.begin(),
                          ipu_strategy_->popart_options.replicatedGraphCount);
    }

    auto *tensor = outputs[i];
190
    tensor->Resize(phi::make_ddim(output_shape));
J
jianghaicheng 已提交
191
    auto fetch_dtype = fetch_info.dataType();
192
    auto paddle_type = PopartDType2VarType(fetch_dtype);
193
    tensor->mutable_data(ctx.GetPlace(),
194
                         framework::TransToPhiDataType(paddle_type));
195
    anchor_wrappers.emplace(tensor_id, PdIArray(tensor));
J
jianghaicheng 已提交
196 197
    popart_anchors.emplace(tensor_id, anchor_wrappers.at(tensor_id));
  }
198 199 200
  VLOG(10) << "Prepared inputs/anchors";

  if (ipu_strategy_->is_training && compiler_resources_->with_lr_sched) {
A
Allen Guo 已提交
201 202 203 204 205 206 207 208 209 210 211
    popart::Optimizer *optimizer;
    if (ipu_strategy_->runtime_options.enable_eval) {
      VLOG(10) << "Switch optimizer to eval mode";
      optimizer = compiler_resources_->eval_optimizer.get();
    } else {
      VLOG(10) << "Update learning_rate";
      auto new_lr =
          GetSingleVarFromScope<float>(scope_, compiler_resources_->lr_var);
      VLOG(10) << "New Lr: " << new_lr;
      optimizer = compiler_resources_->UpdateOptimizer(new_lr);
    }
212 213
    auto *session = dynamic_cast<popart::TrainingSession *>(session_.get());
    session->updateOptimizerFromHost(optimizer);
J
jianghaicheng 已提交
214 215 216 217 218 219
  }

  popart::StepIO stepio(popart_inputs, popart_anchors);
  VLOG(10) << "Running...";
  session_->run(stepio);
  VLOG(10) << "Running...done";
A
Allen Guo 已提交
220
}
J
jianghaicheng 已提交
221

A
Allen Guo 已提交
222 223
void Executor::WeightsToHost() {
  if (ipu_strategy_->is_training && session_) {
J
jianghaicheng 已提交
224
    WeightsToPaddle();
A
Allen Guo 已提交
225 226
  } else {
    LOG(WARNING) << "For a non-trainning graph, cannot sync weights from IPU.";
J
jianghaicheng 已提交
227 228 229
  }
}

230 231 232 233 234 235
void Executor::AcquireDevice() {
  VLOG(10) << "enter Executor::AcquireDevice";
  if (device_) {
    Detach();
    device_.reset();
  }
J
jianghaicheng 已提交
236

237
  bool use_ipu_model = GetBoolEnv("POPLAR_IPUMODEL");
A
Allen Guo 已提交
238
  bool enable_distribution = ipu_strategy_->enable_distribution;
239
  if (use_ipu_model) {
A
Allen Guo 已提交
240
    VLOG(10) << "Create IPU model device...";
A
Allen Guo 已提交
241 242 243 244 245 246
    std::map<std::string, std::string> deviceOpts{
        {
            "numIPUs", std::to_string(ipu_strategy_->num_ipus),
        },
        {"ipuVersion", "ipu2"},
    };
247 248
    device_ = popart::DeviceManager::createDeviceManager().createIpuModelDevice(
        deviceOpts);
A
Allen Guo 已提交
249 250 251 252 253 254 255 256 257 258 259 260 261
    VLOG(10) << "Create IPU model device...done";
  } else if (compile_only_) {
    VLOG(10) << "Create offline device...";
    std::map<std::string, std::string> deviceOpts{
        {
            "numIPUs", std::to_string(ipu_strategy_->num_ipus),
        },
        {"ipuVersion", "ipu2"},
    };
    device_ =
        popart::DeviceManager::createDeviceManager().createOfflineIPUDevice(
            deviceOpts);
    VLOG(10) << "Create offline device...done";
A
Allen Guo 已提交
262
  } else if (enable_distribution) {
A
Allen Guo 已提交
263
    VLOG(10) << "Create distribution device...";
A
Allen Guo 已提交
264 265 266 267 268 269
    auto ipus_per_replica = ipu_strategy_->num_ipus /
                            ipu_strategy_->popart_options.replicatedGraphCount;
    auto device_id = popdist_get_device(ipus_per_replica);
    device_ = popart::DeviceManager::createDeviceManager().acquireDeviceById(
        device_id);
    PADDLE_ENFORCE_NOT_NULL(
270 271 272
        device_,
        errors::Unavailable("Can't attach IPU in distribution, ipu_num = %d.",
                            RequestIpus(ipu_strategy_->num_ipus)));
A
Allen Guo 已提交
273
    VLOG(10) << "Create distribution device...done";
274
  } else {
A
Allen Guo 已提交
275
    VLOG(10) << "Create IPU device...";
276 277 278
    device_ =
        popart::DeviceManager::createDeviceManager().acquireAvailableDevice(
            RequestIpus(ipu_strategy_->num_ipus));
279 280 281
    PADDLE_ENFORCE_NOT_NULL(
        device_, errors::Unavailable("Can't attach IPU, ipu_num = %d.",
                                     RequestIpus(ipu_strategy_->num_ipus)));
A
Allen Guo 已提交
282
    VLOG(10) << "Create IPU device...done";
283 284
  }
  VLOG(10) << "leave Executor::AcquireDevice";
J
jianghaicheng 已提交
285 286
}

287 288 289 290 291 292
void Executor::Detach() {
  if (device_ && device_->isAttached()) {
    VLOG(10) << "trying to detach IPU";
    device_->detach();
    VLOG(10) << " detached IPU";
  }
J
jianghaicheng 已提交
293 294 295
}

void Executor::SetWeightsIO() {
296 297
  auto opt_type = compiler_resources_->optimizer_type;
  VLOG(10) << "SetWeightsIO for " << opt_type;
J
jianghaicheng 已提交
298
  auto pre_post_fix = GetOptPrePostfix(opt_type);
A
Allen Guo 已提交
299
  for (const auto &weight_pd : compiler_resources_->weights) {
J
jianghaicheng 已提交
300 301
    for (const auto &pair : pre_post_fix) {
      // pair.first : popart prefix, pair.second : paddle postfix
A
Allen Guo 已提交
302 303 304
      auto weight_pop = compiler_resources_->tensors[weight_pd];
      auto popart_var = pair.first + weight_pop;
      auto paddle_var = weight_pd + pair.second;
J
jianghaicheng 已提交
305

A
Allen Guo 已提交
306
      if (scope_->FindVar(paddle_var) == nullptr) {
J
jianghaicheng 已提交
307 308
        continue;
      }
A
Allen Guo 已提交
309
      if (!session_->hasInfo(popart_var)) {
310 311 312
        continue;
      }

A
Allen Guo 已提交
313 314 315
      VLOG(10) << "Connect paddle weight: " << paddle_var
               << " with popart weight: " << popart_var;
      auto var = scope_->GetVar(paddle_var);
316
      auto data_ptr = var->GetMutable<framework::LoDTensor>()->data();
A
Allen Guo 已提交
317 318
      auto tensor_info = session_->getInfo(popart_var);
      executor_resources_->weights_io.insert(popart_var,
319 320
                                             {data_ptr, tensor_info});
      executor_resources_->weights_and_opt_state.emplace_back(
A
Allen Guo 已提交
321
          std::make_pair(popart_var, paddle_var));
J
jianghaicheng 已提交
322 323 324 325
    }
  }
}

326 327 328 329
// align_to_popart: align dtype to popart if true, else to paddle
void Executor::ConvertWeights(bool align_to_popart) {
  for (auto weight_pair : executor_resources_->weights_and_opt_state) {
    auto paddle_var = scope_->GetVar(weight_pair.second);
330
    auto paddle_var_dtype = PhiDType2PopartDType(
A
Allen Guo 已提交
331
        paddle_var->GetMutable<framework::LoDTensor>()->dtype());
332 333 334 335

    PADDLE_ENFORCE_EQ((paddle_var_dtype == popart::DataType::FLOAT ||
                       paddle_var_dtype == popart::DataType::FLOAT16),
                      true,
336
                      errors::InvalidArgument(
337 338 339 340 341 342 343 344 345
                          "Currently, we only support FLOAT16 and FLOAT with "
                          "Paddle, but received type is %s.",
                          paddle_var_dtype));

    popart::TensorInfo info = session_->getInfo(weight_pair.first);
    auto popart_var_dtype = info.dataType();
    PADDLE_ENFORCE_EQ((popart_var_dtype == popart::DataType::FLOAT ||
                       popart_var_dtype == popart::DataType::FLOAT16),
                      true,
346
                      errors::InvalidArgument(
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
                          "Currently, we only support FLOAT16 and FLOAT with "
                          "popart, but received type is %s.",
                          popart_var_dtype));

    if (paddle_var_dtype == popart_var_dtype) {
      VLOG(10) << weight_pair.first << " and " << weight_pair.second
               << " have the same dtype : " << popart_var_dtype;
      continue;
    } else if (paddle_var_dtype == popart::DataType::FLOAT) {
      VLOG(10) << weight_pair.first << " and " << weight_pair.second
               << " have different dtype : " << popart_var_dtype;
      auto *data_ptr =
          paddle_var->GetMutable<framework::LoDTensor>()->data<float>();

      auto num_elem = info.nelms();
      if (align_to_popart) {
        std::vector<uint16_t> fp16_data;
        std::transform(data_ptr, data_ptr + num_elem,
                       std::back_inserter(fp16_data),
                       [&](float elem) { return popart::floatToHalf(elem); });
        memcpy(reinterpret_cast<void *>(data_ptr), fp16_data.data(),
               num_elem * sizeof(float16));
      } else {
        std::vector<float> fp32_data;
        auto fp16_data_ptr = reinterpret_cast<uint16_t *>(data_ptr);
        std::transform(fp16_data_ptr, fp16_data_ptr + num_elem,
                       std::back_inserter(fp32_data), [&](uint16_t elem) {
                         return popart::halfToFloat(elem);
                       });
        memcpy(reinterpret_cast<void *>(data_ptr), fp32_data.data(),
               num_elem * sizeof(float));
      }
    } else {
380 381
      PADDLE_THROW(
          errors::Unimplemented("Convert Paddle FLOAT16 to popart FLOAT"));
382 383
    }
  }
J
jianghaicheng 已提交
384 385
}

386 387 388 389 390 391 392 393 394 395 396 397 398
// |-----------------------------------------------------|
// | Paddle  | Popart  |             Method              |
// |-----------------------------------------------------|
// |  FLOAT  |  FLOAT  |         Paddle -> Popart        |
// |  FLOAT  | FLOAT16 | floatToHalf -> Paddle -> Popart |
// | FLOAT16 |  FLOAT  |         Unimplemented           |
// | FLOAT16 | FLOAT16 |         Paddle -> Popart        |
// |-----------------------------------------------------|
// floatToHalf -> Paddle: cast then save to paddle
// Paddle -> Popart: copy from paddle to popart
void Executor::WeightsFromPaddle() {
  ConvertWeights(true);
  session_->writeWeights(executor_resources_->weights_io);
A
Allen Guo 已提交
399
  session_->weightsFromHost();
400
}
J
jianghaicheng 已提交
401

402 403 404 405 406 407 408 409 410 411 412
// |-----------------------------------------------------|
// | Paddle  | Popart  |             Method              |
// |-----------------------------------------------------|
// |  FLOAT  |  FLOAT  |         Popart -> Paddle        |
// |  FLOAT  | FLOAT16 | Popart -> Paddle -> halfToFloat |
// | FLOAT16 |  FLOAT  |         Unimplemented           |
// | FLOAT16 | FLOAT16 |         Popart -> Paddle        |
// |-----------------------------------------------------|
// Paddle -> halfToFloat: cast then save to paddle
// Popart -> Paddle: copy from paddle to popart
void Executor::WeightsToPaddle() {
A
Allen Guo 已提交
413
  session_->weightsToHost();
414 415 416
  session_->readWeights(executor_resources_->weights_io);
  ConvertWeights(false);
}
J
jianghaicheng 已提交
417

418 419 420 421 422 423 424
void Executor::SaveModelToHost(const std::string &path) {
  if (session_) {
    WeightsToPaddle();
    session_->modelToHost(path);
  } else {
    LOG(WARNING) << "Model is empty";
  }
J
jianghaicheng 已提交
425 426 427 428 429
}

}  // namespace ipu
}  // namespace platform
}  // namespace paddle