matmul_op.cc 8.1 KB
Newer Older
M
Markus Kliegl 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/operators/matmul_op.h"

namespace paddle {
namespace operators {

using framework::Tensor;

class MatMulOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* context) const override {
    PADDLE_ENFORCE(context->HasInput("X"),
                   "Input(X) of MatMulOp should not be null.");
    PADDLE_ENFORCE(context->HasInput("Y"),
                   "Input(Y) of MatMulOp should not be null.");
    PADDLE_ENFORCE(context->HasOutput("Out"),
                   "Output(Out) of MatMulOp should not be null.");

    auto dim_x = context->GetInputDim("X");
    auto dim_y = context->GetInputDim("Y");
    bool transpose_x = context->Attrs().Get<bool>("transpose_X");
    bool transpose_y = context->Attrs().Get<bool>("transpose_Y");

    PADDLE_ENFORCE_GE(dim_x.size(), 1,
                      "Input tensor X must be at least 1-dimensional.");
    PADDLE_ENFORCE_GE(dim_y.size(), 1,
                      "Input tensor Y must be at least 1-dimensional.");
C
chengduoZH 已提交
44 45 46 47

    std::vector<int64_t> out_dim;
    int64_t batch_count = 1;
    if (dim_x.size() > 3) {
C
chengduoZH 已提交
48 49 50 51 52
      PADDLE_ENFORCE_EQ(
          dim_y.size(), dim_x.size(),
          "The dimensions of X and Y must be the same, and both of "
          "them should be %d-dimensional.",
          dim_x.size());
C
chengduoZH 已提交
53

C
chengduoZH 已提交
54 55
      // The front rank-2 dimensions are accumulated on the batch_count, and the
      // last two dimensions are used for matrix multiplication.
C
chengduoZH 已提交
56
      for (int j = 0; j < dim_x.size() - 2; ++j) {
C
chengduoZH 已提交
57 58 59
        PADDLE_ENFORCE_EQ(dim_y[j], dim_x[j],
                          "The %d-th dimension of X and Y must be the same.",
                          j);
C
chengduoZH 已提交
60 61 62 63
        out_dim.push_back(dim_x[j]);
        batch_count *= dim_x[j];
      }
    }
M
Markus Kliegl 已提交
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88

    int M = 0, N = 0, KX = 0, KY = 0, batchCountX = 0, batchCountY = 0;
    bool remove_initial_dim = false, remove_final_dim = false;

    switch (dim_x.size()) {
      case 1:
        if (transpose_x) {
          M = dim_x[0];
          KX = 1;
        } else {
          M = 1;
          KX = dim_x[0];
          remove_initial_dim = true;
        }
        break;
      case 2:
        M = transpose_x ? dim_x[1] : dim_x[0];
        KX = transpose_x ? dim_x[0] : dim_x[1];
        break;
      case 3:
        batchCountX = dim_x[0];
        M = transpose_x ? dim_x[2] : dim_x[1];
        KX = transpose_x ? dim_x[1] : dim_x[2];
        break;
      default:
C
chengduoZH 已提交
89 90 91 92 93
        batchCountX = batch_count;
        size_t mat_s = dim_x.size() - 2;
        M = transpose_x ? dim_x[mat_s + 1] : dim_x[mat_s];
        KX = transpose_x ? dim_x[mat_s] : dim_x[mat_s + 1];
        break;
M
Markus Kliegl 已提交
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
    }

    switch (dim_y.size()) {
      case 1:
        if (transpose_y) {
          N = dim_y[0];
          KY = 1;
        } else {
          N = 1;
          KY = dim_y[0];
          remove_final_dim = true;
        }
        break;
      case 2:
        KY = transpose_y ? dim_y[1] : dim_y[0];
        N = transpose_y ? dim_y[0] : dim_y[1];
        break;
      case 3:
        batchCountY = dim_y[0];
        KY = transpose_y ? dim_y[2] : dim_y[1];
        N = transpose_y ? dim_y[1] : dim_y[2];
        break;
      default:
C
chengduoZH 已提交
117 118 119 120
        batchCountY = batch_count;
        size_t mat_s = dim_y.size() - 2;
        KY = transpose_y ? dim_y[mat_s + 1] : dim_y[mat_s];
        N = transpose_y ? dim_y[mat_s] : dim_y[mat_s + 1];
M
Markus Kliegl 已提交
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
    }

    PADDLE_ENFORCE_EQ(
        KX, KY,
        "First matrix's width must be equal with second matrix's height.");
    if (batchCountX && batchCountY) {
      PADDLE_ENFORCE_EQ(
          batchCountX, batchCountY,
          "When Input(X) and Input(Y) are both three dimensional, they "
          "must have the same batch dimension.");
    }
    int batchCount = std::max(batchCountX, batchCountY);

    std::vector<int64_t> dim_out;
    if (batchCount) {
C
chengduoZH 已提交
136 137 138 139 140
      if (dim_x.size() > 3) {
        dim_out.insert(dim_out.begin(), out_dim.begin(), out_dim.end());
      } else {
        dim_out.push_back(batchCount);
      }
M
Markus Kliegl 已提交
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
    }
    if (!remove_initial_dim) {
      dim_out.push_back(M);
    }
    if (!remove_final_dim) {
      dim_out.push_back(N);
    }
    if (dim_out.size() == 0) {
      // We don't support 0-dimensional Tensors (scalars), so instead
      // treat the output as a Tensor of shape (1, ) in this case.
      dim_out.push_back(1);
    }
    context->SetOutputDim("Out", framework::make_ddim(dim_out));
    context->ShareLoD("X", /*->*/ "Out");
  }
};

class MatMulOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
160
  MatMulOpMaker(OpProto* proto, OpAttrChecker* op_checker)
M
Markus Kliegl 已提交
161 162 163 164 165 166 167 168 169 170 171 172 173
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X", "The first input of MatMul op");
    AddInput("Y", "The second input of MatMul op");
    AddOutput("Out", "The output of MatMul op");
    AddAttr<bool>("transpose_X",
                  R"DOC(If true, use the transpose of `X`.
        )DOC")
        .SetDefault(false);
    AddAttr<bool>("transpose_Y",
                  R"DOC(If true, use the transpose of `Y`.
        )DOC")
        .SetDefault(false);
    AddComment(R"DOC(
K
kexinzhao 已提交
174 175 176 177
MatMul Operator.


This operator is used to perform (batched) matrix multiplication
M
Markus Kliegl 已提交
178 179 180 181 182 183 184 185 186 187 188 189 190 191
over the last two dimensions of the input tensors `X` and `Y`.

If a transpose flag is specified, the last two dimensions of the
tensor are transposed. If the tensor is rank-1 of shape [D], then
for `X` it is treated as [1, D] in nontransposed form and as [D, 1]
in transposed form, whereas for `Y` it is the opposite: It is treated
as [D, 1] in nontransposed form and as [1, D] in transposed form.

Examples without transpose:
- X: [K], Y: [K] => Out: [1]
- X: [K], Y: [K, N] => Out: [N]
- X: [B, M, K], Y: [K] => Out: [B, M]
- X: [M, K], Y: [B, K, N] => Out: [B, M, N]
- X: [B, M, K], Y: [B, K, N] => Out: [B, M, N]
C
chengduoZH 已提交
192
- X: [B, ..., M, K], Y: [B, ..., K, N] => Out: [B, ..., M, N]
M
Markus Kliegl 已提交
193 194 195

The behavior is designed to be similar to the `numpy.matmul` function.
The differences are:
C
chengduoZH 已提交
196 197
- When the rank of the input data is less than or equal to 3, it
  is similar to the `numpy.matmul` function.
C
chengduoZH 已提交
198 199
- When the rank of the input is greater than 3, the rank of X and
  Y must be equal, and the front `rank - 2` dimensions must be equal.
M
Markus Kliegl 已提交
200 201 202
- We add `transpose_X` and `transpose_Y` flags.

Both the input `X` and `Y` can carry the LoD (Level of Details) information,
K
kexinzhao 已提交
203 204
or not. But the output only shares the LoD information with input `X`.

M
Markus Kliegl 已提交
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
)DOC");
  }
};

class MatMulOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* context) const override {
    PADDLE_ENFORCE(context->HasInput("X"), "Input(X) should not be null");
    PADDLE_ENFORCE(context->HasInput("Y"), "Input(Y) should not be null");
    PADDLE_ENFORCE(context->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) should not be null");
    auto x_dims = context->GetInputDim("X");
    auto y_dims = context->GetInputDim("Y");

    auto x_grad_name = framework::GradVarName("X");
    auto y_grad_name = framework::GradVarName("Y");

    if (context->HasOutput(x_grad_name)) {
      context->SetOutputDim(x_grad_name, x_dims);
    }
    if (context->HasOutput(y_grad_name)) {
      context->SetOutputDim(y_grad_name, y_dims);
    }
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP(matmul, ops::MatMulOp, ops::MatMulOpMaker, matmul_grad,
            ops::MatMulOpGrad);
REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
241 242 243 244
    matmul, ops::MatMulKernel<paddle::platform::CPUDeviceContext, float>);
REGISTER_OP_CPU_KERNEL(
    matmul_grad,
    ops::MatMulGradKernel<paddle::platform::CPUDeviceContext, float>);