set_value_op.h 13.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
//   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <algorithm>
#include <string>
#include <vector>

21
#include "paddle/fluid/framework/convert_utils.h"
22 23 24 25
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/operators/assign_value_op.h"
26
#include "paddle/fluid/operators/eigen/eigen_function.h"
27
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
28
#include "paddle/fluid/operators/slice_utils.h"
29
#include "paddle/fluid/operators/strided_slice_op.h"
30
#include "paddle/fluid/operators/utils.h"
31 32 33 34 35 36
#include "paddle/fluid/platform/enforce.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
using DDim = framework::DDim;

inline void GetOffsets(const DDim& big_dim, const DDim& small_dim,
                       DDim start_offset, int cur_dim,
                       std::vector<DDim>* offsets) {
  if (cur_dim == big_dim.size()) {
    offsets->push_back(start_offset);
    return;
  }
  if (small_dim[cur_dim] == big_dim[cur_dim]) {
    GetOffsets(big_dim, small_dim, start_offset, cur_dim + 1, offsets);
  } else {
    for (int i = 0; i < big_dim[cur_dim]; i++) {
      GetOffsets(big_dim, small_dim, start_offset, cur_dim + 1, offsets);
      start_offset[cur_dim] += 1;
    }
  }
}
55 56 57 58 59 60 61 62 63 64 65 66 67

inline std::string GetValueName(framework::proto::VarType::Type data_type) {
  std::string value_name;
  switch (data_type) {
    case framework::proto::VarType::INT32:
      value_name = "int32_values";
      break;
    case framework::proto::VarType::INT64:
      value_name = "int64_values";
      break;
    case framework::proto::VarType::FP32:
      value_name = "fp32_values";
      break;
68 69 70
    case framework::proto::VarType::FP64:
      value_name = "fp64_values";
      break;
71 72 73
    case framework::proto::VarType::BOOL:
      value_name = "bool_values";
      break;
74

75 76 77 78 79 80 81 82 83
    default:
      PADDLE_THROW(platform::errors::Unimplemented(
          "Unsupported data type(code %d) for SetValue operator, only "
          "supports bool, int32, float32 and int64.",
          data_type));
  }
  return value_name;
}

Z
zyfncg 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
// check whether the tensor with dimension of second can assign to the
// tensor with dimension of first
inline void CheckIsDimsMatch(const framework::DDim first,
                             const framework::DDim second) {
  int ignore_axis1 = 0, ignore_axis2 = 0;
  for (; ignore_axis1 < first.size(); ++ignore_axis1) {
    if (first[ignore_axis1] != 1) {
      break;
    }
  }
  for (; ignore_axis2 < second.size(); ++ignore_axis2) {
    if (second[ignore_axis2] != 1) {
      break;
    }
  }

  if (second.size() == ignore_axis2) {
    // second tensor has only one value
    return;
  }

  if (first.size() - ignore_axis1 >= second.size() - ignore_axis2) {
    auto idx1 = first.size() - 1;
    auto idx2 = second.size() - 1;
    bool is_match = true;
    for (; idx2 >= ignore_axis2; idx2--) {
      if (first[idx1--] != second[idx2] && second[idx2] != 1) {
        is_match = false;
        break;
      }
    }
    if (is_match) {
      return;
    }
  }
  PADDLE_THROW(platform::errors::InvalidArgument(
      "The shape of tensor assigned value must match the shape "
      "of target shape: %d, but now shape is %d.",
      second.to_str(), first.to_str()));
}
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
template <typename DeviceContext, typename T>
class SetValueGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    int rank = ctx.Input<Tensor>(framework::GradVarName("Out"))->dims().size();

    switch (rank) {
      case 1:
        SetValueGradCompute<1>(ctx);
        break;
      case 2:
        SetValueGradCompute<2>(ctx);
        break;
      case 3:
        SetValueGradCompute<3>(ctx);
        break;
      case 4:
        SetValueGradCompute<4>(ctx);
        break;
      case 5:
        SetValueGradCompute<5>(ctx);
        break;
      case 6:
        SetValueGradCompute<6>(ctx);
        break;
      default:
        PADDLE_THROW(platform::errors::InvalidArgument(
            "The rank of set_value_grad's input should be less than 7, but "
            "received %d.",
            rank));
    }
  }

 private:
  template <size_t D>
  void SetValueGradCompute(const framework::ExecutionContext& context) const {
    auto starts = context.Attr<std::vector<int64_t>>("starts");
    auto ends = context.Attr<std::vector<int64_t>>("ends");
    auto steps = context.Attr<std::vector<int64_t>>("steps");

    auto axes_int64 = context.Attr<std::vector<int64_t>>("axes");
    std::vector<int> axes(axes_int64.begin(), axes_int64.end());

    auto starts_indices = Eigen::DSizes<Eigen::DenseIndex, D>();
    auto ends_indices = Eigen::DSizes<Eigen::DenseIndex, D>();
    auto steps_indices = Eigen::DSizes<Eigen::DenseIndex, D>();
    auto reverse_axis = Eigen::array<bool, D>();

    auto list_new_ends_tensor =
        context.MultiInput<framework::Tensor>("EndsTensorList");
    auto list_new_starts_tensor =
        context.MultiInput<framework::Tensor>("StartsTensorList");
    auto list_new_steps_tensor =
        context.MultiInput<framework::Tensor>("StepsTensorList");

    if (list_new_starts_tensor.size() > 0) {
      starts = GetDataFromTensorList<int64_t>(list_new_starts_tensor);
    }

    if (list_new_ends_tensor.size() > 0) {
      ends = GetDataFromTensorList<int64_t>(list_new_ends_tensor);
    }

    if (list_new_steps_tensor.size() > 0) {
      steps = GetDataFromTensorList<int64_t>(list_new_steps_tensor);
    }

    auto in = context.Input<framework::Tensor>(framework::GradVarName("Out"));
    PADDLE_ENFORCE_EQ(
        in->IsInitialized(), true,
        platform::errors::PermissionDenied(
            "The input of `set_value_grad`(%s) has not been initialized",
            framework::GradVarName("Out")));
    auto grad_value = context.Output<framework::Tensor>(
        framework::GradVarName("ValueTensor"));
    auto grad_input =
        context.Output<framework::Tensor>(framework::GradVarName("Input"));
    auto in_dims = in->dims();

    auto decrease_axis_int64 =
        context.Attr<std::vector<int64_t>>("decrease_axes");
    std::vector<int> decrease_axis(decrease_axis_int64.begin(),
                                   decrease_axis_int64.end());
    std::vector<int> infer_flags(axes.size(), 1);
    std::vector<int64_t> out_dims_vector(in_dims.size(), -1);
    StridedSliceOutDims(starts, ends, steps, axes, infer_flags, in_dims,
                        decrease_axis, out_dims_vector.data(), axes.size(),
                        false);

213
    framework::DDim out_dims(phi::make_ddim(out_dims_vector));
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245

    std::vector<int> reverse_vector(starts.size(), 0);
    StridedSliceFunctor(starts.data(), ends.data(), steps.data(), axes.data(),
                        reverse_vector.data(), in_dims, infer_flags,
                        decrease_axis, starts.size());

    for (size_t axis = 0; axis < D; axis++) {
      starts_indices[axis] = 0;
      ends_indices[axis] = out_dims[axis];
      steps_indices[axis] = 1;
      reverse_axis[axis] = false;
    }

    for (size_t axis = 0; axis < axes.size(); axis++) {
      int axis_index = axes[axis];
      starts_indices[axis_index] = starts[axis];
      ends_indices[axis_index] = ends[axis];
      steps_indices[axis_index] = steps[axis];
      reverse_axis[axis_index] = (reverse_vector[axis] == 1) ? true : false;
    }

    bool need_reverse = false;
    for (size_t axis = 0; axis < axes.size(); axis++) {
      if (reverse_vector[axis] == 1) {
        need_reverse = true;
        break;
      }
    }

    auto& dev_ctx = context.template device_context<DeviceContext>();
    auto& place =
        *context.template device_context<DeviceContext>().eigen_device();
246
    phi::funcs::SetConstant<DeviceContext, T> set_zero;
247 248 249

    if (grad_input) {
      // Set gradient of `Input`
250
      paddle::framework::TensorCopy(*in, context.GetPlace(), grad_input);
251 252 253 254 255

      auto grad_input_t =
          framework::EigenTensor<T, D, Eigen::RowMajor,
                                 Eigen::DenseIndex>::From(*grad_input);

256
      framework::Tensor tmp(grad_input->dtype());
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
      tmp.mutable_data<T>(out_dims, context.GetPlace());
      set_zero(dev_ctx, &tmp, static_cast<T>(0));
      auto tmp_t = framework::EigenTensor<T, D, Eigen::RowMajor,
                                          Eigen::DenseIndex>::From(tmp);

      grad_input_t.stridedSlice(starts_indices, ends_indices, steps_indices)
          .device(place) = tmp_t;
    }
    if (grad_value) {
      grad_value->mutable_data<T>(context.GetPlace());
      set_zero(dev_ctx, grad_value, static_cast<T>(0));

      auto in_t = framework::EigenTensor<T, D, Eigen::RowMajor,
                                         Eigen::DenseIndex>::From(*in);

      if (grad_value->dims() == out_dims) {
        auto grad_value_t =
            framework::EigenTensor<T, D, Eigen::RowMajor,
                                   Eigen::DenseIndex>::From(*grad_value);
        if (need_reverse) {
277
          framework::Tensor tmp(grad_value->dtype());
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
          tmp.mutable_data<T>(out_dims, context.GetPlace());
          set_zero(dev_ctx, &tmp, static_cast<T>(0));
          auto tmp_t = framework::EigenTensor<T, D, Eigen::RowMajor,
                                              Eigen::DenseIndex>::From(tmp);

          tmp_t.device(place) =
              in_t.stridedSlice(starts_indices, ends_indices, steps_indices);
          grad_value_t.device(place) = tmp_t.reverse(reverse_axis);
        } else {
          grad_value_t.device(place) =
              in_t.stridedSlice(starts_indices, ends_indices, steps_indices);
        }
      } else {
        int out_dims_size = out_dims.size();
        auto grad_value_dims = grad_value->dims();
        auto fake_grad_value_dims = out_dims;

        // Create an extented shape according to the rules of broadcast.
        auto grad_value_dims_size = grad_value_dims.size();

        int num_decrease = 0;

        int decrease_axis_size = decrease_axis.size();
        for (int i = 0; i < out_dims_size; i++) {
          if (decrease_axis.end() !=
              std::find(decrease_axis.begin(), decrease_axis.end(), i)) {
            fake_grad_value_dims[i] = 1;
            num_decrease++;
          } else if (i < out_dims_size - (grad_value_dims_size +
                                          decrease_axis_size - num_decrease)) {
            fake_grad_value_dims[i] = 1;
          } else {
            auto index_grad =
                i - (out_dims_size - (grad_value_dims_size +
                                      decrease_axis_size - num_decrease));
            fake_grad_value_dims[i] = grad_value_dims[index_grad];

            PADDLE_ENFORCE_EQ((out_dims[i] == grad_value_dims[index_grad]) ||
                                  (grad_value_dims[index_grad] == 1),
                              true,
                              platform::errors::InvalidArgument(
                                  "An error occurred while calculating %s: "
                                  "[%s] can not be accumulated into [%s].",
                                  framework::GradVarName("ValueTensor"),
                                  out_dims, grad_value_dims));
          }
        }

        VLOG(3) << "Dimensions of " << framework::GradVarName("ValueTensor")
                << "([" << grad_value_dims << "])is broadcasted into ["
                << fake_grad_value_dims << "].";

        auto extent = Eigen::DSizes<Eigen::DenseIndex, D>();
        auto offset = out_dims;
        for (int i = 0; i < out_dims_size; i++) {
          offset[i] = 0;
          extent[i] = fake_grad_value_dims[i];
        }
        std::vector<DDim> offsets;
        GetOffsets(out_dims, fake_grad_value_dims, offset, 0, &offsets);

        auto grad_value_t =
            framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::
                From(*grad_value, fake_grad_value_dims);

343
        framework::Tensor tmp(grad_value->dtype());
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
        tmp.mutable_data<T>(out_dims, context.GetPlace());
        set_zero(dev_ctx, &tmp, static_cast<T>(0));
        auto tmp_t = framework::EigenTensor<T, D, Eigen::RowMajor,
                                            Eigen::DenseIndex>::From(tmp);

        tmp_t.device(place) =
            in_t.stridedSlice(starts_indices, ends_indices, steps_indices);

        // accumulate gradient
        for (auto offset : offsets) {
          grad_value_t.device(place) =
              grad_value_t +
              tmp_t.slice(framework::EigenDim<D>::From(offset), extent);
        }
        if (need_reverse) {
359
          framework::Tensor tmp_value(grad_value->dtype());
360 361 362 363 364 365 366 367 368 369 370 371
          tmp_value.mutable_data<T>(fake_grad_value_dims, context.GetPlace());
          auto tmp_value_t =
              framework::EigenTensor<T, D, Eigen::RowMajor,
                                     Eigen::DenseIndex>::From(tmp_value);
          tmp_value_t.device(place) = grad_value_t.reverse(reverse_axis);
          grad_value_t.device(place) = tmp_value_t;
        }
      }
    }
  }
};

372 373
}  // namespace operators
}  // namespace paddle