test_crf_decoding_op.py 4.4 KB
Newer Older
C
Cao Ying 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
import unittest
import random
import numpy as np

from op_test import OpTest


class CRFDecoding(object):
    def __init__(self, emission_weights, transition_weights,
                 seq_start_positions):
        assert (emission_weights.shape[0] == seq_start_positions[-1])
        self.tag_num = emission_weights.shape[1]
        self.seq_num = len(seq_start_positions) - 1

        self.seq_start_positions = seq_start_positions
        self.x = emission_weights

        self.a = transition_weights[0, :]
        self.b = transition_weights[1, :]
        self.w = transition_weights[2:, :]

        self.track = np.zeros(
Q
Qiao Longfei 已提交
23
            (seq_start_positions[-1], self.tag_num), dtype="int64")
C
Cao Ying 已提交
24
        self.decoded_path = np.zeros(
Q
Qiao Longfei 已提交
25
            (seq_start_positions[-1], 1), dtype="int64")
C
Cao Ying 已提交
26 27 28 29

    def _decode_one_sequence(self, decoded_path, x):
        seq_len, tag_num = x.shape
        alpha = np.zeros((seq_len, tag_num), dtype="float64")
Q
Qiao Longfei 已提交
30
        track = np.zeros((seq_len, tag_num), dtype="int64")
C
Cao Ying 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127

        for i in range(tag_num):
            alpha[0, i] = self.a[i] + x[0, i]

        for k in range(1, seq_len):
            for i in range(tag_num):
                max_score = -np.finfo("float64").max
                max_idx = 0
                for j in range(tag_num):
                    score = alpha[k - 1, j] + self.w[j, i]
                    if score > max_score:
                        max_score = score
                        max_idx = j
                alpha[k, i] = max_score + x[k, i]
                track[k, i] = max_idx

        max_score = -np.finfo("float64").max
        max_idx = 0
        for i in range(tag_num):
            score = alpha[seq_len - 1, i] + self.b[i]
            if score > max_score:
                max_score = score
                max_idx = i

        decoded_path[-1] = max_idx
        for i in range(seq_len - 1, 0, -1):
            decoded_path[i - 1] = max_idx = track[i, max_idx]

    def decode(self):
        for i in range(self.seq_num):
            start = self.seq_start_positions[i]
            end = self.seq_start_positions[i + 1]
            self._decode_one_sequence(self.decoded_path[start:end, :],
                                      self.x[start:end, :])
        return self.decoded_path


class TestCRFDecodingOp1(OpTest):
    """
    Compare the dynamic program with random generated parameters and inputs
    with grouth truth not being given.
    """

    def set_test_data(self):
        SEQ_NUM = 3
        TAG_NUM = 17
        MAX_SEQ_LEN = 10

        lod = [[0]]
        for i in range(SEQ_NUM):
            lod[-1].append(lod[-1][-1] + random.randint(1, MAX_SEQ_LEN))
        emission = np.random.uniform(-1, 1,
                                     [lod[-1][-1], TAG_NUM]).astype("float64")
        transition = np.random.uniform(-0.5, 0.5,
                                       [TAG_NUM + 2, TAG_NUM]).astype("float64")

        self.inputs = {
            "Emission": (emission, lod),
            "Transition": transition,
        }

        decoder = CRFDecoding(emission, transition, lod[0])
        decoded_path = decoder.decode()

        self.outputs = {"ViterbiPath": decoded_path}

    def setUp(self):
        self.op_type = "crf_decoding"
        self.set_test_data()

    def test_check_output(self):
        self.check_output()


class TestCRFDecodingOp2(OpTest):
    """
    Compare the dynamic program with brute force computation with
    ground truth being given.
    """

    def setUp(self):
        self.op_type = "crf_decoding"
        TAG_NUM = 5

        lod = [[0, 1, 3, 6, 10]]
        transition = np.repeat(
            np.arange(
                TAG_NUM, dtype="float64").reshape(1, TAG_NUM),
            TAG_NUM + 2,
            axis=0)
        emission = np.repeat(
            np.arange(
                TAG_NUM, dtype="float64").reshape(1, TAG_NUM),
            lod[-1][-1],
            axis=0)

        labels = np.random.randint(
Q
Qiao Longfei 已提交
128
            low=0, high=TAG_NUM, size=(lod[-1][-1], 1), dtype="int64")
C
Cao Ying 已提交
129
        predicted_labels = np.ones(
Q
Qiao Longfei 已提交
130 131
            (lod[-1][-1], 1), dtype="int64") * (TAG_NUM - 1)
        expected_output = (labels == predicted_labels).astype("int64")
C
Cao Ying 已提交
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146

        self.inputs = {
            "Emission": (emission, lod),
            "Transition": transition,
            "Label": (labels, lod)
        }

        self.outputs = {"ViterbiPath": expected_output}

    def test_check_output(self):
        self.check_output()


if __name__ == "__main__":
    unittest.main()