backward.py 19.6 KB
Newer Older
Q
Qiao Longfei 已提交
1
from paddle.v2.fluid import framework as framework
F
update  
fengjiayi 已提交
2
from . import core
F
update  
fengjiayi 已提交
3
import collections
4
import copy
5

6 7 8 9
__all__ = [
    'append_backward',
    'calc_gradient',
]
10 11


12 13
def _rename_arg_(op_descs, old_name, new_name, begin_idx=None, end_idx=None):
    """
14
    Traverse all ops in op_descs[begin_idx : end_idx],
15 16
    if any op has inputs/outputs named "old_name", rename it as 'new_name'
    """
F
update  
fengjiayi 已提交
17 18 19
    if begin_idx is None:
        begin_idx = 0
    if end_idx is None:
20
        end_idx = len(op_descs)
F
update  
fengjiayi 已提交
21
    for i in range(begin_idx, end_idx):
22
        op_desc = op_descs[i]
F
fengjiayi 已提交
23 24 25 26
        if isinstance(op_desc, tuple):
            op_desc = op_desc[0]
        op_desc.rename_input(old_name, new_name)
        op_desc.rename_output(old_name, new_name)
F
update  
fengjiayi 已提交
27 28


F
fengjiayi 已提交
29
def _create_op_desc_(op_type, inputs, outputs, attrs):
30 31 32
    """
    Create a C++ OpDesc object with specified inputs, outputs and attributes.
    """
F
fengjiayi 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46
    op_desc = core.OpDesc()
    op_desc.set_type(op_type)
    for para, args in inputs.iteritems():
        op_desc.set_input(para, args)
    for para, args in outputs.iteritems():
        op_desc.set_output(para, args)
    for name, val in attrs.iteritems():
        if isinstance(val, framework.Block):
            op_desc.set_block_attr(name, val.desc)
        else:
            op_desc.set_attr(name, val)
    return op_desc


47 48 49 50 51 52
def _infer_var_data_type_(grad_var_name, block):
    """
    Infer the data type of given grad variable
    """
    grad_var = block.desc.find_var(grad_var_name.encode("ascii"))
    fwd_name = _strip_grad_suffix_(grad_var_name.encode("ascii"))
F
fengjiayi 已提交
53 54 55 56 57 58 59
    if block.desc.has_var_recursive(fwd_name):
        fwd_var = block.desc.find_var_recursive(fwd_name.encode("ascii"))
        grad_var.set_dtype(fwd_var.dtype())
    else:
        grad_var.set_dtype(core.DataType.FP32)


F
fengjiayi 已提交
60
def _all_in_set_(cands, s):
61 62 63
    """
    Test if all elements of 'cands' are in set 's'
    """
F
fengjiayi 已提交
64 65
    if len(cands) == 0:
        return False
F
fengjiayi 已提交
66 67 68 69 70 71
    for c in cands:
        if not c in s:
            return False
    return True


72 73 74 75 76 77 78 79 80 81 82 83
def _some_in_set_(cands, s):
    """
    Test if some elements of 'cands' are in set 's'
    """
    if len(cands) == 0:
        return False
    for c in cands:
        if c in s:
            return True
    return False


F
fengjiayi 已提交
84
def _strip_grad_suffix_(name):
85 86 87 88 89
    """
    Strip the grad suffix from the given varibale name
    e.g. x@GRAD ==> x
         y@GRAD@RENAME@1 ==> y
    """
F
fengjiayi 已提交
90 91
    pos = name.find(core.grad_var_suffix())
    return name[:pos] if pos != -1 else name
F
fengjiayi 已提交
92 93 94


def _append_grad_suffix_(name):
95 96 97 98
    """
    Append grad suffix to the given variable name
    e.g. x ==> x@GRAD
    """
F
fengjiayi 已提交
99 100 101
    return name + core.grad_var_suffix()


F
fengjiayi 已提交
102
def _addup_repetitive_outputs_(op_descs):
103 104 105 106 107
    """
    In backward part, an variable may be the output of more than one ops.
    In this case, the variable should be the accumulation of all the outputs.
    `sum_op`s are added to implement the accumulate.
    """
F
update  
fengjiayi 已提交
108 109
    pending_sum_ops = []
    var_rename_count = collections.defaultdict(int)
F
fengjiayi 已提交
110 111
    renamed_vars = collections.defaultdict(list)
    for idx, op_desc in enumerate(op_descs):
F
update  
fengjiayi 已提交
112
        for var_name in op_desc.input_arg_names():
F
fengjiayi 已提交
113 114 115 116 117
            if len(renamed_vars[var_name]) > 1:
                pending_sum_ops.append(
                    (_create_op_desc_("sum", {"X": renamed_vars[var_name]},
                                      {"Out": [var_name]}, {}), idx))
                renamed_vars[var_name] = [var_name]
F
update  
fengjiayi 已提交
118
        for var_name in op_desc.output_arg_names():
F
fengjiayi 已提交
119 120 121
            if var_name == core.empty_var_name(
            ) or var_name in op_desc.input_arg_names():
                # empty variable or inplace op
F
fengjiayi 已提交
122
                continue
F
fengjiayi 已提交
123
            if len(renamed_vars[var_name]) == 0:
F
update  
fengjiayi 已提交
124
                # it's the first time we get the variable
F
fengjiayi 已提交
125
                renamed_vars[var_name] = [var_name]
F
update  
fengjiayi 已提交
126
            else:
F
fengjiayi 已提交
127
                if len(renamed_vars[var_name]) == 1:
F
update  
fengjiayi 已提交
128 129
                    new_name = var_name + "@RENAME@" + \
                        str(var_rename_count[var_name])
F
fengjiayi 已提交
130
                    var_rename_count[var_name] += 1
F
update  
fengjiayi 已提交
131
                    # rename original var_name
F
fengjiayi 已提交
132 133
                    renamed_vars[var_name][0] = new_name
                    _rename_arg_(op_descs, var_name, new_name, 0, idx)
F
fengjiayi 已提交
134
                    _rename_arg_(pending_sum_ops, var_name, new_name)
F
update  
fengjiayi 已提交
135 136 137

                new_name = var_name + "@RENAME@" + \
                    str(var_rename_count[var_name])
F
fengjiayi 已提交
138
                var_rename_count[var_name] += 1
F
update  
fengjiayi 已提交
139
                op_desc.rename_output(var_name, new_name)
F
fengjiayi 已提交
140 141
                renamed_vars[var_name].append(new_name)
    for var_name, inputs in renamed_vars.iteritems():
F
update  
fengjiayi 已提交
142
        if len(inputs) > 1:
F
fengjiayi 已提交
143
            pending_sum_ops.append((_create_op_desc_(
F
fengjiayi 已提交
144
                "sum", {"X": inputs}, {"Out": [var_name]}, {}), len(op_descs)))
F
fengjiayi 已提交
145
    # sum_op descs are sorted according to their insert position
F
update  
fengjiayi 已提交
146
    for p in reversed(pending_sum_ops):
F
fengjiayi 已提交
147 148 149 150 151 152
        op_descs.insert(p[1], p[0])

    return op_descs


def _remove_no_grad_branch_(op_descs, no_grad_set):
153 154 155 156
    """
    Remove unnecessary grad ops
    A grad op can be removed in two cases:
        1. all outputs of the grad op are in 'no_grad_set'
F
fengjiayi 已提交
157
        2. all grad inputs of the grad op are in 'no_grad_set'
158
    """
F
fengjiayi 已提交
159 160

    def _op_can_be_removed_(op_desc, no_grad_set):
F
fengjiayi 已提交
161 162
        out_arg_names = op_desc.output_arg_names()
        if len(out_arg_names) == 0 or _all_in_set_(out_arg_names, no_grad_set):
F
fengjiayi 已提交
163 164 165 166
            return True
        if _all_in_set_(
                filter(lambda name: name.find(core.grad_var_suffix()) != -1,
                       op_desc.input_arg_names()), no_grad_set):
F
fengjiayi 已提交
167
            no_grad_set.union(out_arg_names)
F
fengjiayi 已提交
168 169 170
            return True
        return False

F
fengjiayi 已提交
171 172
    # Remove ops whose outputs are all in no_grad_dict
    op_descs = filter(
F
fengjiayi 已提交
173
        lambda op_desc: not _op_can_be_removed_(op_desc, no_grad_set), op_descs)
F
fengjiayi 已提交
174 175
    # Insert fill_zeros_like_op
    to_insert = []
F
fengjiayi 已提交
176
    for idx, op_desc in enumerate(op_descs):
F
fengjiayi 已提交
177
        for arg in op_desc.input_arg_names():
F
fengjiayi 已提交
178 179 180
            if core.grad_var_suffix() in arg and arg in no_grad_set:
                to_insert.append((_create_op_desc_("fill_zeros_like", {
                    "X": [_strip_grad_suffix_(arg)]
181
                }, {"Out": [arg]}, {}), idx))
F
fengjiayi 已提交
182 183 184 185 186 187

    map(lambda p: op_descs.insert(p[1], p[0]), reversed(to_insert))

    return op_descs


188 189
def _append_backward_ops_(block,
                          ops,
F
fengjiayi 已提交
190 191 192 193
                          target_block,
                          no_grad_dict,
                          grad_to_var,
                          callback=None):
194 195 196 197 198
    """
    Create all grad ops, and insert them into given block

    Args:
        block(Block): the block where forward ops are
199
        ops(Op): the forward operators whose backward ops need to be added
200
        target_block(Block): the block which is going to hold new generated grad ops
201
        no_grad_dict(dict):
202 203 204 205 206
            key(int)  block index
            val(set) a set of varibale names. These varibales have no gradient
        grad_to_var(dict)(output argument):
            key(str): grad variable name
            val(str): corresponding forward variable name
F
fengjiayi 已提交
207
        callback(callable object): a callable object used to decorate new generated grad ops
208
    """
F
fengjiayi 已提交
209 210
    if callback is None:

F
fix bug  
fengjiayi 已提交
211
        def empty_callback(block, context):
F
fengjiayi 已提交
212 213 214 215
            pass

        callback = empty_callback
    elif not hasattr(callback, '__call__'):
F
fengjiayi 已提交
216
        raise ValueError("'callback' must be a callable object.")
F
fengjiayi 已提交
217

F
fengjiayi 已提交
218
    # grad_op_descs holds created grad_op, and will be appended to target_block
F
fengjiayi 已提交
219 220
    grad_op_descs = []
    program = block.program
221
    for op in reversed(ops):
F
fengjiayi 已提交
222 223 224 225 226
        grad_sub_block_list = []
        # If the op has its own sub-block, deal with the sub-block first
        if op.has_attr("sub_block"):
            sub_block = program.block(op.block_attr("sub_block"))
            grad_sub_block = program.create_block(parent_idx=sub_block.idx)
227 228
            _append_backward_ops_(sub_block, sub_block.ops, grad_sub_block,
                                  no_grad_dict, grad_to_var)
F
fengjiayi 已提交
229 230
            grad_sub_block_list.append(grad_sub_block.desc)

F
fengjiayi 已提交
231
        # Getting op's corresponding grad_op
F
fengjiayi 已提交
232 233
        grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
            op.desc, no_grad_dict[block.idx], grad_sub_block_list)
Y
Yang Yu 已提交
234

F
fengjiayi 已提交
235 236 237 238 239 240 241
        grad_op_descs.extend(grad_op_desc)
        grad_to_var.update(op_grad_to_var)

    grad_op_descs = _addup_repetitive_outputs_(grad_op_descs)

    grad_op_descs = _remove_no_grad_branch_(grad_op_descs,
                                            no_grad_dict[block.idx])
F
fengjiayi 已提交
242

F
fengjiayi 已提交
243
    # append op_desc in grad_op_descs to target_block
F
update  
fengjiayi 已提交
244
    for op_desc in grad_op_descs:
F
fengjiayi 已提交
245 246
        new_op_desc = target_block.desc.append_op()
        new_op_desc.copy_from(op_desc)
F
fengjiayi 已提交
247
        callback(block=target_block, context=grad_to_var)
F
update  
fengjiayi 已提交
248

F
fengjiayi 已提交
249 250

def _append_backward_vars_(block, start_op_idx, grad_to_var, grad_info_map):
251 252 253 254 255 256 257 258 259 260 261 262
    """
    Create new variables required by backward pass.

    Args:
        block(Block): the block where new variables will be created
        start_op_idx(int): Only variables required by ops in block.ops[start_op_idx : ] will be created
        grad_to_var(dict):
            key(str): grad variable name
            val(str): corresponding forward variable name
            In most cases, this dict is generated by _append_backward_ops_()
        grad_info_map(dict)(output argument):
            key(str): forward variable name
263
            val(tuple): a tuple of (str, Block), str is the corresponding grad name, Block is the block containing grad variable
264
    """
F
fengjiayi 已提交
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
    for op_idx in range(start_op_idx, block.desc.op_size()):
        op_desc = block.desc.op(op_idx)
        if op_desc.has_attr("sub_block"):
            sub_block = block.program.block(op_desc.block_attr("sub_block"))
            _append_backward_vars_(sub_block, 0, grad_to_var, grad_info_map)
        new_vars = set()
        # create new gradient variables
        for grad_var_name in op_desc.output_arg_names():
            grad_var_name = grad_var_name.encode("ascii")
            if block.desc.has_var_recursive(
                    grad_var_name) or grad_var_name == core.empty_var_name():
                continue
            block.desc.var(grad_var_name)
            new_vars.add(grad_var_name)
            if not grad_to_var.has_key(grad_var_name):
                continue
            grad_info_map[grad_to_var[grad_var_name]] = (grad_var_name, block)
        # infer_shape and infer_type
        op_desc.infer_var_type(block.desc)
        op_desc.infer_shape(block.desc)
        for arg in op_desc.output_arg_names():
            if arg in new_vars:
                _infer_var_data_type_(arg, block)
F
update  
fengjiayi 已提交
288 289


290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
def _rename_grad_(block, start_op_idx, grad_to_var, target_grad_map):
    var_map = copy.copy(target_grad_map)
    for op_idx in range(start_op_idx, block.desc.op_size()):
        op_desc = block.desc.op(op_idx)
        for name in op_desc.input_arg_names():
            if name in var_map:
                op_desc.rename_input(name, var_map[name])

        for name in op_desc.output_arg_names():
            if block.desc.find_var(name.encode("ascii")):
                new_name = "%s_%s" % (name, core.unique_integer(name))
                op_desc.rename_output(name, new_name)
                var_map[name] = new_name

    for g, ng in var_map.iteritems():
        if g in grad_to_var:
            grad_to_var[ng] = grad_to_var[g]
            grad_to_var.pop(g)


def _get_stop_gradients_(program):
    no_grad_dict = dict()
    assert isinstance(program, framework.Program)
    for block in program.blocks:
        assert isinstance(block, framework.Block)
        block_no_grad_set = set()
        for var in block.vars.itervalues():
            assert isinstance(var, framework.Variable)
            if var.stop_gradient:
                block_no_grad_set.add(_append_grad_suffix_(var.name))
        no_grad_dict[block.idx] = block_no_grad_set
    return no_grad_dict


F
fengjiayi 已提交
324
def append_backward(loss, parameter_list=None, no_grad_set=None, callback=None):
325
    """
F
fengjiayi 已提交
326 327 328 329
    Append backward part to main_program

    Args:
        loss(Variable): The variable generated by cost function.
330 331
        parameter_list(list[string]): Parameters that need to be updated by
            optimizer. If None, it means all parameters need to be updated.
332
        no_grad_set(set): Variables that have no gradients in Block 0.
333 334
            All variables with `step_gradient=True` from all blocks will be
            automatically added.
F
fengjiayi 已提交
335 336

    Return:
337
        (list[(Variable,Variable)]): list of (parameter, gradient) pair.
338 339
    """
    assert isinstance(loss, framework.Variable)
Y
Yu Yang 已提交
340

F
fengjiayi 已提交
341
    program = loss.block.program
F
fengjiayi 已提交
342
    if no_grad_set is None:
343 344 345 346
        no_grad_set = set()
    no_grad_set = copy.copy(no_grad_set)
    no_grad_dict = _get_stop_gradients_(program)
    no_grad_dict[0].update(map(_append_grad_suffix_, no_grad_set))
Y
Yu Yang 已提交
347

F
update  
fengjiayi 已提交
348
    grad_info_map = dict()
F
fengjiayi 已提交
349
    root_block = program.block(0)
F
fengjiayi 已提交
350

F
fengjiayi 已提交
351 352
    fwd_op_num = root_block.desc.op_size()
    current_block_idx = program.current_block_idx
F
fengjiayi 已提交
353 354
    grad_to_var = dict()

355 356 357 358 359 360 361 362 363 364 365 366
    op_desc = _create_op_desc_("fill_constant", {}, {
        "Out": [_append_grad_suffix_(loss.name)]
    }, {"shape": [1],
        "value": 1.0,
        "dtype": loss.dtype})
    root_block.desc.append_op().copy_from(op_desc)

    block_no_grad_set = set(map(_strip_grad_suffix_, no_grad_dict[0]))
    op_path = _find_op_path_(root_block, [loss], [], block_no_grad_set)
    no_grad_dict[0].update(map(_append_grad_suffix_, block_no_grad_set))

    _append_backward_ops_(root_block, op_path, root_block, no_grad_dict,
F
fengjiayi 已提交
367
                          grad_to_var, callback)
368 369 370 371 372 373

    # Because calc_gradient may be called multiple times,
    # we need rename the internal gradient variables so that they have
    # different names.
    _rename_grad_(root_block, fwd_op_num, grad_to_var, {})

F
fengjiayi 已提交
374
    _append_backward_vars_(root_block, fwd_op_num, grad_to_var, grad_info_map)
F
fengjiayi 已提交
375

F
fengjiayi 已提交
376 377
    program.current_block_idx = current_block_idx
    program.sync_with_cpp()
F
fengjiayi 已提交
378

379 380 381
    if parameter_list is not None:
        parameters = parameter_list
    else:
F
fengjiayi 已提交
382
        params = program.global_block().all_parameters()
383
        parameters = [param.name for param in params]
384

385 386
    params_and_grads = []
    for param in parameters:
F
update  
fengjiayi 已提交
387
        if param not in grad_info_map:
388
            raise ValueError("param %s is not in map" % param)
F
update  
fengjiayi 已提交
389
        grad_info = grad_info_map[param]
F
fengjiayi 已提交
390
        grad_block = grad_info[1]
391 392 393 394
        if not grad_block.has_var(grad_info[0]):
            raise ValueError("grad block[{0}] did not have grad var {1}".format(
                grad_info[1], grad_info[0]))
        # Get the param var from the global block
F
fengjiayi 已提交
395
        param_var = program.global_block().var(param)
396 397 398 399 400 401
        grad_var = grad_block.var(grad_info[0])
        if loss.block.has_var(grad_info[0]):
            params_and_grads.append((param_var, grad_var))
        else:
            params_and_grads.append((param_var, None))
    return params_and_grads
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545


def _as_list(x):
    if x is None:
        return []
    return list(x) if isinstance(x, collections.Sequence) else [x]


def _find_op_path_(block, outputs, inputs, no_grad_set):
    """
    no_grad_set will also be changed
    """
    input_names = set([inp.name for inp in inputs])
    output_names = set([out.name for out in outputs])

    relevant_op_flags = [True] * len(block.ops)

    # All the inputs of the block are used if inputs is empty,
    if inputs:
        for i, op in enumerate(block.ops):
            if _some_in_set_(op.desc.input_arg_names(), input_names):
                for name in op.desc.output_arg_names():
                    if name not in no_grad_set:
                        input_names.add(name)
            else:
                relevant_op_flags[i] = False

    for i, op in reversed(list(enumerate(block.ops))):
        if _some_in_set_(op.desc.output_arg_names(), output_names):
            for name in op.desc.input_arg_names():
                if name not in no_grad_set:
                    output_names.add(name)
        else:
            relevant_op_flags[i] = False

    op_path = [
        block.ops[i] for i in range(len(block.ops)) if relevant_op_flags[i]
    ]

    if inputs:
        for op in op_path:
            for name in op.desc.input_arg_names():
                if name not in input_names:
                    no_grad_set.add(name)

    return op_path


def calc_gradient(targets, inputs, target_gradients=None, no_grad_set=None):
    """
    Backpropagate the graidents of targets to inputs.

    Args:
        targets(Variable|list[Variable]): The target variables
        inputs(Variable|list[Variable]): The input variables
        no_grad_set(set[string]): The names of variables that have no gradients
            in Block 0. All variables with `stop_gradient=True` from all blocks
            will be automatically added.

    Return:
        (list[Variable]): list of gradients for inputs
        If an input does not affect targets, the corresponding gradient variable
        will be None
    """
    targets = _as_list(targets)
    inputs = _as_list(inputs)
    target_gradients = _as_list(target_gradients)

    block = targets[0].block
    prog = block.program
    block_idx = block.idx

    if not target_gradients:
        target_gradients = [None] * len(targets)

    if len(targets) != len(target_gradients):
        raise ValueError(
            "Should have the same number of target_gradients as targets")

    if no_grad_set is None:
        no_grad_set = set()
    no_grad_set = copy.copy(no_grad_set)
    no_grad_dict = _get_stop_gradients_(prog)
    no_grad_dict[0].update(map(_append_grad_suffix_, no_grad_set))

    fwd_op_num = block.desc.op_size()

    target_grad_map = {}
    for i, grad in enumerate(target_gradients):
        target = targets[i]
        if grad is None:
            grad_name = _append_grad_suffix_(target.name)
            op_desc = _create_op_desc_("fill_constant_batch_size_like",
                                       {"Input": [target.name]},
                                       {"Out": [grad_name]}, {
                                           "shape": target.shape,
                                           "value": 1.0,
                                           "dtype": target.dtype,
                                           'input_dim_idx': 0,
                                           'output_dim_idx': 0
                                       })
            block.desc.append_op().copy_from(op_desc)
        else:
            if target.block.idx != block_idx or target.block.program != prog:
                raise ValueError("all targets must be in the same block")
            if target.shape != grad.shape:
                raise ValueError(
                    "The shapes of target and grad are different: %s %s" % (
                        target.name, grad.name))
            target_grad_map[_append_grad_suffix_(target.name)] = grad.name

    for input in inputs:
        if input.block.program != prog:
            raise "input must be in the same program as targets"

    block_no_grad_set = set(map(_strip_grad_suffix_, no_grad_dict[0]))
    op_path = _find_op_path_(block, targets, inputs, block_no_grad_set)
    no_grad_dict[0].update(map(_append_grad_suffix_, block_no_grad_set))
    grad_to_var = dict()
    grad_info_map = dict()
    _append_backward_ops_(block, op_path, block, no_grad_dict, grad_to_var)

    # Because calc_gradient may be called multiple times,
    # we need rename the internal gradient variables so that they have
    # different names.
    _rename_grad_(block, fwd_op_num, grad_to_var, target_grad_map)

    _append_backward_vars_(block, fwd_op_num, grad_to_var, grad_info_map)
    prog.sync_with_cpp()

    grad_vars = []
    for input_var in inputs:
        if input_var.name not in grad_info_map:
            grad_vars.append(None)
        else:
            grad_info = grad_info_map[input_var.name]
            grad_block = grad_info[1]
            grad_var = grad_block.var(grad_info[0])
            grad_vars.append(grad_var)

    if len(grad_vars) == 1:
        return grad_vars[0]
    else:
        return grad_vars