adagrad_kernel.cu 4.9 KB
Newer Older
H
hong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/adagrad_kernel.h"

#include "paddle/fluid/operators/math/selected_rows_functor.h"
#include "paddle/fluid/platform/device/gpu/gpu_primitives.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/math_function.h"
#include "paddle/phi/kernels/impl/adagrad_kernel_impl.h"

namespace phi {

template <typename T, int block_size>
__global__ void MergeGradKernel(const T* grad,
                                const int64_t* grad_rows,
                                T* grad_merge,
                                const int64_t* grad_merge_rows,
                                size_t grad_merge_rows_size,
                                int64_t row_numel) {
  const int ty = blockIdx.y;
  int tid = threadIdx.x;
  __shared__ size_t grad_merge_idx;

  if (tid == 0) {
    for (size_t i = 0; i < grad_merge_rows_size; i++) {
      if (grad_rows[ty] == grad_merge_rows[i]) {
        grad_merge_idx = i;
      }
    }
  }

  __syncthreads();

  grad += ty * row_numel;
  grad_merge += grad_merge_idx * row_numel;
  for (int index = tid; index < row_numel; index += block_size) {
    paddle::platform::CudaAtomicAdd(grad_merge + index, grad[index]);
  }
}

template <typename T, int block_size>
__global__ void SparseAdagradFunctorKernel(const T* grad,
                                           const int64_t* rows,
                                           const T* learning_rate,
                                           T* param,
                                           T* moment,
                                           int64_t row_numel,
                                           T epsilon) {
  const int ty = blockIdx.y;
  int tid = threadIdx.x;

  grad += ty * row_numel;
  param += rows[ty] * row_numel;
  moment += rows[ty] * row_numel;

  for (int index = tid; index < row_numel; index += block_size) {
    // Since index in rows of SelectedRows can be duplicate, we have to use
    // Atomic Operation to avoid concurrent write error.
    paddle::platform::CudaAtomicAdd(param + index,
                                    -1.0 * learning_rate[0] * grad[index] /
                                        (sqrt(moment[index]) + epsilon));
  }
}

template <typename T>
struct SparseAdagradFunctor<phi::GPUContext, T> {
  void operator()(const phi::GPUContext& context,
                  const phi::SelectedRows& grad,
                  const DenseTensor& learning_rate,
                  T epsilon,
                  DenseTensor* moment,
                  DenseTensor* param) {
    // 1. g_m.rows = set(g.rows)
    auto grad_width = grad.value().dims()[1];
    paddle::operators::math::scatter::MergeAdd<phi::GPUContext, T> merge_func;
    auto grad_merge = merge_func(context, grad);
    auto* grad_merge_data = grad_merge.mutable_value()->template data<T>();
    paddle::framework::Vector<int64_t> merge_rows(grad_merge.rows());
    // 2. m += g_m * g_m
    auto grad_square =
        SquareSelectedRows<phi::GPUContext, T>(context, grad_merge);

    paddle::operators::math::SelectedRowsAddToTensor<phi::GPUContext, T>
        functor;
    functor(context, grad_square, moment);

    // 3. update parameter
    auto* lr = learning_rate.data<T>();
    auto* param_data = param->data<T>();
    auto* moment_data = moment->data<T>();

    const int block_size = 256;
    dim3 threads(block_size, 1);
    dim3 grid2(1, merge_rows.size());
    paddle::framework::MixVector<int64_t> mixv_merge_rows(&merge_rows);
    SparseAdagradFunctorKernel<
        T,
        256><<<grid2,
               threads,
               0,
               reinterpret_cast<const phi::GPUContext&>(context).stream()>>>(
        grad_merge_data,
        mixv_merge_rows.CUDAMutableData(context.GetPlace()),
        lr,
        param_data,
        moment_data,
        grad_width,
        epsilon);
    mixv_merge_rows.CopyToCPU();
  }
};

template struct SparseAdagradFunctor<phi::GPUContext, float>;
template struct SparseAdagradFunctor<phi::GPUContext, double>;

}  // namespace phi

PD_REGISTER_KERNEL(
    adagrad, GPU, ALL_LAYOUT, phi::AdagradDenseKernel, float, double) {}

PD_REGISTER_KERNEL(adagrad_dense_param_sparse_grad,
                   GPU,
                   ALL_LAYOUT,
                   phi::AdagradSparseKernel,
                   float,
                   double) {}