paddle_pass_builder.cc 13.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/inference/api/paddle_pass_builder.h"
16 17 18
#ifdef PADDLE_WITH_CUDA
#include <cudnn.h>
#endif
19 20 21
#ifdef PADDLE_WITH_HIP
#include <miopen/miopen.h>
#endif
22
#include <glog/logging.h>
23
#include <sstream>
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70

namespace paddle {

void PaddlePassBuilder::AppendPass(const std::string &pass_type) {
  passes_.push_back(pass_type);
}

void PaddlePassBuilder::TurnOnDebug() {
  std::vector<std::string> passes;
  auto it = std::begin(passes_);
  while (it != std::end(passes_)) {
    if (*it != "graph_viz_pass") {
      it = passes_.insert(it + 1, "graph_viz_pass");
    } else {
      ++it;
    }
  }
}

std::string PaddlePassBuilder::DebugString() {
  std::stringstream ss;
  ss << "Passes to apply:\n";
  for (auto &pass : passes_) {
    ss << "  - " << pass << '\n';
  }
  return ss.str();
}

void PaddlePassBuilder::DeletePass(const std::string &pass_type) {
  auto it = std::begin(passes_);
  while (it != std::end(passes_)) {
    if (*it == pass_type) {
      it = passes_.erase(it);
    } else {
      ++it;
    }
  }
}

void PaddlePassBuilder::InsertPass(size_t idx, const std::string &pass_type) {
  passes_.insert(std::begin(passes_) + idx, pass_type);
}

void PaddlePassBuilder::DeletePass(size_t idx) {
  passes_.erase(std::begin(passes_) + idx);
}

W
Wojciech Uss 已提交
71 72
void PaddlePassBuilder::AppendAnalysisPass(const std::string &pass) {
  analysis_passes_.push_back(pass);
73 74
}

W
Wojciech Uss 已提交
75 76
void PaddlePassBuilder::ClearPasses() { passes_.clear(); }

77
const std::vector<std::string> kTRTSubgraphPasses({
78
  "adaptive_pool2d_convert_global_pass",
79 80 81 82 83 84 85
      "shuffle_channel_detect_pass",           //
      "quant_conv2d_dequant_fuse_pass",        //
      "delete_quant_dequant_op_pass",          //
      "delete_quant_dequant_filter_op_pass",   //
      "delete_weight_dequant_linear_op_pass",  //
      "delete_quant_dequant_linear_op_pass",   //
      "add_support_int8_pass",                 //
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
      // "fc_fuse_pass",                        //
      "simplify_with_basic_ops_pass",                 //
      "embedding_eltwise_layernorm_fuse_pass",        //
      "preln_embedding_eltwise_layernorm_fuse_pass",  //
      "multihead_matmul_fuse_pass_v2",                //
      "multihead_matmul_fuse_pass_v3",                //
      "skip_layernorm_fuse_pass",                     //
      "preln_skip_layernorm_fuse_pass",               //
      "conv_bn_fuse_pass",                            //
      "unsqueeze2_eltwise_fuse_pass",                 //
      "trt_squeeze2_matmul_fuse_pass",                //
      "trt_reshape2_matmul_fuse_pass",                //
      "trt_flatten2_matmul_fuse_pass",                //
      "trt_map_matmul_v2_to_mul_pass",                //
      "trt_map_matmul_v2_to_matmul_pass",             //
      "trt_map_matmul_to_mul_pass",                   //
      "fc_fuse_pass",                                 //
      "conv_elementwise_add_fuse_pass",               //
104 105
      "tensorrt_subgraph_pass",                       //
      "conv_bn_fuse_pass",                            //
106 107
#if CUDNN_VERSION >= 7100  // To run conv_fusion, the version of cudnn must be
                           // guaranteed at least v7
108 109 110
// cudnn8.0 has memory leak problem in conv + eltwise + act, so we
// disable the pass.
#if !(CUDNN_VERSION >= 8000 && CUDNN_VERSION < 8100)
111 112
      "conv_elementwise_add_act_fuse_pass",   //
      "conv_elementwise_add2_act_fuse_pass",  //
113 114
#endif
#endif
115 116 117
      "transpose_flatten_concat_fuse_pass",
});

D
denglin-github 已提交
118 119
const std::vector<std::string> kDlnneSubgraphPasses({
    "is_test_pass",                  //
D
denglin-github 已提交
120
    "delete_dropout_op_pass"         //
D
denglin-github 已提交
121 122 123 124 125 126 127
    "simplify_with_basic_ops_pass",  //
    "conv_bn_fuse_pass",             //
    "depthwise_conv_bn_fuse_pass",   //
    "shuffle_channel_detect_pass",   //
    "dlnne_subgraph_pass",           //
});

石晓伟 已提交
128 129 130 131 132 133
const std::vector<std::string> kLiteSubgraphPasses({
#ifdef PADDLE_WITH_LITE
    "lite_subgraph_pass",
#endif
});

134 135
GpuPassStrategy::GpuPassStrategy() : PassStrategy({}) {
  passes_.assign({
136
    //   "identity_scale_op_clean_pass",             //
137 138 139 140 141 142 143 144 145 146 147 148 149 150
    "is_test_pass",                               //
        "simplify_with_basic_ops_pass",           //
        "conv_bn_fuse_pass",                      //
        "conv_eltwiseadd_bn_fuse_pass",           //
        "embedding_eltwise_layernorm_fuse_pass",  //
        "multihead_matmul_fuse_pass_v2",          //
        "gpu_cpu_squeeze2_matmul_fuse_pass",      //
        "gpu_cpu_reshape2_matmul_fuse_pass",      //
        "gpu_cpu_flatten2_matmul_fuse_pass",      //
        "gpu_cpu_map_matmul_v2_to_mul_pass",      //
        "gpu_cpu_map_matmul_v2_to_matmul_pass",   //
        "gpu_cpu_map_matmul_to_mul_pass",         //
        "fc_fuse_pass",                           //
        "fc_elementwise_layernorm_fuse_pass",     //
151 152
#if CUDNN_VERSION >= 7100  // To run conv_fusion, the version of cudnn must be
                           // guaranteed at least v7
153 154 155
// cudnn8.0 has memory leak problem in conv + eltwise + act, so we
// disable the pass.
#if !(CUDNN_VERSION >= 8000 && CUDNN_VERSION < 8100)
156 157
        "conv_elementwise_add_act_fuse_pass",   //
        "conv_elementwise_add2_act_fuse_pass",  //
158 159 160 161
#endif
        "conv_elementwise_add_fuse_pass",      //
#endif                                         //
        "transpose_flatten_concat_fuse_pass",  //
162
        // following pass should be located in the last, since it will
163 164
        // work on all fused ops.
        "runtime_context_cache_pass"
165 166 167 168 169
  });

  use_gpu_ = true;
}

170 171 172 173 174 175 176
void GpuPassStrategy::EnableCUDNN() {
  if (!use_cudnn_) {
    passes_.insert(passes_.begin(), "cudnn_placement_pass");
  }
  use_cudnn_ = true;
}

177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
void GpuPassStrategy::Exp_EnableUseGpuFp16() {
  passes_.assign({
    "is_test_pass",                               //
        "simplify_with_basic_ops_pass",           //
        "conv_bn_fuse_pass",                      //
        "conv_eltwiseadd_bn_fuse_pass",           //
        "embedding_eltwise_layernorm_fuse_pass",  //
        "multihead_matmul_fuse_pass_v2",          //
        "gpu_cpu_squeeze2_matmul_fuse_pass",      //
        "gpu_cpu_reshape2_matmul_fuse_pass",      //
        "gpu_cpu_flatten2_matmul_fuse_pass",      //
        "gpu_cpu_map_matmul_v2_to_mul_pass",      //
        "gpu_cpu_map_matmul_v2_to_matmul_pass",   //
        "gpu_cpu_map_matmul_to_mul_pass",         //
        // "fc_fuse_pass",                        //
        "fc_elementwise_layernorm_fuse_pass",  //
#if CUDNN_VERSION >= 7100  // To run conv_fusion, the version of cudnn must be
                           // guaranteed at least v7
// cudnn8.0 has memory leak problem in conv + eltwise + act, so we
// disable the pass.
#if !(CUDNN_VERSION >= 8000 && CUDNN_VERSION < 8100)
        "conv_elementwise_add_act_fuse_pass",   //
        "conv_elementwise_add2_act_fuse_pass",  //
#endif
        "conv_elementwise_add_fuse_pass",      //
#endif                                         //
        "transpose_flatten_concat_fuse_pass",  //
        "mixed_precision_configure_pass",      //
        "runtime_context_cache_pass"           //
  });

  use_gpu_fp16_ = true;
}

W
Wojciech Uss 已提交
211 212
void GpuPassStrategy::EnableMKLDNN() {
  LOG(ERROR) << "GPU not support MKLDNN yet";
213 214
}

W
Wojciech Uss 已提交
215 216
void GpuPassStrategy::EnableMkldnnQuantizer() {
  LOG(ERROR) << "GPU not support MKL-DNN quantization";
Y
Yan Chunwei 已提交
217 218
}

219 220 221 222
void GpuPassStrategy::EnableMkldnnBfloat16() {
  LOG(ERROR) << "GPU not support MKL-DNN bfloat16";
}

223 224 225
CpuPassStrategy::CpuPassStrategy() : PassStrategy({}) {
  // NOTE the large fusions should be located in the front, so that they will
  // not be damaged by smaller ones.
226 227
  passes_.assign({"simplify_with_basic_ops_pass",  //
                  "layer_norm_fuse_pass",
228
                  "attention_lstm_fuse_pass",       //
229 230
                  "seqconv_eltadd_relu_fuse_pass",  //
                  // "seqpool_concat_fuse_pass",    //
231
                  "seqpool_cvm_concat_fuse_pass",  //
232
                  // "embedding_fc_lstm_fuse_pass", //
233
                  // TODO(wilber): fix correctness problem.
234
                  // "fc_lstm_fuse_pass",                    //
235 236 237 238
                  "mul_lstm_fuse_pass",                      //
                  "fc_gru_fuse_pass",                        //
                  "mul_gru_fuse_pass",                       //
                  "seq_concat_fc_fuse_pass",                 //
239 240 241
                  "gpu_cpu_squeeze2_matmul_fuse_pass",       //
                  "gpu_cpu_reshape2_matmul_fuse_pass",       //
                  "gpu_cpu_flatten2_matmul_fuse_pass",       //
H
heliqi 已提交
242
                  "matmul_v2_scale_fuse_pass",               //
243 244
                  "gpu_cpu_map_matmul_v2_to_mul_pass",       //
                  "gpu_cpu_map_matmul_v2_to_matmul_pass",    //
H
heliqi 已提交
245
                  "matmul_scale_fuse_pass",                  //
246
                  "gpu_cpu_map_matmul_to_mul_pass",          //
247 248 249 250 251 252 253 254
                  "fc_fuse_pass",                            //
                  "repeated_fc_relu_fuse_pass",              //
                  "squared_mat_sub_fuse_pass",               //
                  "conv_bn_fuse_pass",                       //
                  "conv_eltwiseadd_bn_fuse_pass",            //
                  "conv_transpose_bn_fuse_pass",             //
                  "conv_transpose_eltwiseadd_bn_fuse_pass",  //
                  "is_test_pass",                            //
255 256
                  // following pass should be located in the last, since
                  // it will work on all fused ops.
257
                  "runtime_context_cache_pass"});
Y
Yan Chunwei 已提交
258

259 260
  use_gpu_ = false;
}
W
Wojciech Uss 已提交
261

262 263
void CpuPassStrategy::EnableCUDNN() { LOG(ERROR) << "CPU not support cuDNN"; }

W
Wojciech Uss 已提交
264 265 266 267 268 269
void CpuPassStrategy::EnableMKLDNN() {
// TODO(Superjomn) Consider the way to mix CPU with GPU.
#ifdef PADDLE_WITH_MKLDNN
  if (!use_mkldnn_) {
    passes_.insert(passes_.begin(), "mkldnn_placement_pass");

270
    for (auto &pass : std::vector<std::string>({
271 272 273 274 275 276
             "depthwise_conv_mkldnn_pass",    //
             "conv_bn_fuse_pass",             // Execute BN passes again to
             "conv_eltwiseadd_bn_fuse_pass",  // preserve correct pass order
             "conv_transpose_bn_fuse_pass",   //
             "conv_transpose_eltwiseadd_bn_fuse_pass",  //
             "conv_bias_mkldnn_fuse_pass",              //
277
             "conv_transpose_bias_mkldnn_fuse_pass",
278 279
             // TODO(baoachun): Need to support 5-dimensional input.
             // "conv3d_bias_mkldnn_fuse_pass",  //
280 281
             "conv_elementwise_add_mkldnn_fuse_pass",
             "conv_concat_relu_mkldnn_fuse_pass",
B
baoachun 已提交
282 283 284 285 286
             "conv_relu_mkldnn_fuse_pass",          //
             "conv_leaky_relu_mkldnn_fuse_pass",    //
             "conv_relu6_mkldnn_fuse_pass",         //
             "conv_swish_mkldnn_fuse_pass",         //
             "conv_hard_swish_mkldnn_fuse_pass",    //
287
             "conv_mish_mkldnn_fuse_pass",          //
B
baoachun 已提交
288
             "conv_hard_sigmoid_mkldnn_fuse_pass",  //
289
             // TODO(baoachun) fix int8 accuracy
B
baoachun 已提交
290
             "conv_gelu_mkldnn_fuse_pass",
291 292 293 294 295
             "scale_matmul_fuse_pass",                        //
             "reshape_transpose_matmul_mkldnn_fuse_pass",     //
             "reshape_transpose_matmul_v2_mkldnn_fuse_pass",  //
             "matmul_transpose_reshape_fuse_pass",            //
             "matmul_v2_transpose_reshape_fuse_pass",         //
296
             // Disabled due to topology-dependent speed-up
H
heliqi 已提交
297 298
             //  "fc_mkldnn_pass",
             //  "fc_act_mkldnn_fuse_pass",
299 300
             "batch_norm_act_fuse_pass",              //
             "softplus_activation_mkldnn_fuse_pass",  //
301
             "shuffle_channel_mkldnn_detect_pass",    //
302
             "elt_act_mkldnn_fuse_pass",              //
303 304
             // TODO(intel): Please fix the bug on windows.
             // https://github.com/PaddlePaddle/Paddle/issues/29710
305
             // "mkldnn_inplace_pass",  // This pass should be activated after
306 307
             // fuses. Disabled by default due to
             // little gain and lots of problems
308
         })) {
W
Wojciech Uss 已提交
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
      passes_.push_back(pass);
    }
  }
  use_mkldnn_ = true;
#else
  use_mkldnn_ = false;
#endif
}

void CpuPassStrategy::EnableMkldnnQuantizer() {
#ifdef PADDLE_WITH_MKLDNN
  if (!use_mkldnn_quantizer_) {
    passes_.push_back("cpu_quantize_placement_pass");
  }
  use_mkldnn_quantizer_ = true;
#else
  use_mkldnn_quantizer_ = false;
#endif
}

329 330
void CpuPassStrategy::EnableMkldnnBfloat16() {
#ifdef PADDLE_WITH_MKLDNN
331 332 333
  if (!use_mkldnn_bfloat16_) {
    passes_.push_back("cpu_bfloat16_placement_pass");
    passes_.push_back("cpu_bfloat16_pass");
334
    passes_.push_back("cpu_quantize_squash_pass");
335
  }
336 337 338 339 340 341
  use_mkldnn_bfloat16_ = true;
#else
  use_mkldnn_bfloat16_ = false;
#endif
}

J
jianghaicheng 已提交
342 343 344 345
IpuPassStrategy::IpuPassStrategy() : PassStrategy({}) {
  passes_.assign({"inference_process_pass"});
}

346
}  // namespace paddle