tile_op.cc 10.8 KB
Newer Older
L
lilong12 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/tile_op.h"
#include <memory>
#include <string>
#include <vector>

namespace paddle {
namespace operators {

using framework::Tensor;

class TileOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override {
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "Tile");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "Tile");
    auto x_dims = ctx->GetInputDim("X");
    auto repeat_times = ctx->Attrs().Get<std::vector<int>>("repeat_times");
    if (repeat_times.size() == 0) {
      repeat_times = std::vector<int>(x_dims.size(), -1);
    }

    PADDLE_ENFORCE_LE(
        x_dims.size(), MAX_RANK_SUPPORTED,
        platform::errors::InvalidArgument(
            "The rank of the input 'x' for tile op "
            "must not be greater than %d, but the value received is %d.",
            MAX_RANK_SUPPORTED, x_dims.size()));
    PADDLE_ENFORCE_LE(
        repeat_times.size(), MAX_RANK_SUPPORTED,
        platform::errors::InvalidArgument(
            "The size of the shape of input 'repeat_times' for tile op "
            "must not be greater than %d, but the value received is %d.",
            MAX_RANK_SUPPORTED, repeat_times.size()));
    PADDLE_ENFORCE_GE(
        repeat_times.size(), 1,
        platform::errors::InvalidArgument(
            "The size of the shape of input 'repeat_times' for tile op "
            "must be positive integers, but the value received is %d.",
            repeat_times.size()));

    auto out_rank =
        std::max(static_cast<size_t>(x_dims.size()), repeat_times.size());
    std::vector<int64_t> out_shape(out_rank);
    auto x_dim_vec = framework::vectorize<int>(x_dims);
    if (x_dim_vec.size() > repeat_times.size()) {
      auto diff = x_dim_vec.size() - repeat_times.size();
      repeat_times.insert(repeat_times.begin(), diff, -1);
    } else {
      auto diff = repeat_times.size() - x_dim_vec.size();
      x_dim_vec.insert(x_dim_vec.begin(), diff, -1);
    }
    for (size_t i = 0; i < repeat_times.size(); ++i) {
      if (x_dim_vec[i] == -1 || repeat_times[i] == -1) {
        out_shape[i] = -1;
      } else {
        PADDLE_ENFORCE_GT(
            repeat_times[i], 0,
            platform::errors::InvalidArgument(
                "Every element of the input 'repeat_times' for tile op must be "
                "greater than 0, but the value given is %d.",
                repeat_times[i]));
        out_shape[i] = x_dim_vec[i] * repeat_times[i];
      }
    }

    ctx->SetOutputDim("Out", framework::make_ddim(out_shape));
    if (out_shape[0] == x_dims[0]) {
      ctx->ShareLoD("X", "Out");
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        ctx.device_context());
  }

  framework::OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const Tensor& tensor,
      const framework::OpKernelType& expected_kernel_type) const override {
    if (var_name == "repeat_times_tensor" || var_name == "RepeatTimes") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
};

class TileOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X",
             "(Tensor, default Tensor<float>). X is the input to be titled.");
    AddInput(
        "RepeatTimes",
        "(Tensor<int>, optional). If provided, it is the number of repeat times"
        " along specific axis. It has a higher priority than "
        "repeat_times_tensor and the repeat_times attribute.")
        .AsDispensable();
    AddInput("repeat_times_tensor",
             "(Tensor Tensor<int>), repeat times for X."
             "It has a higher priority than repeat_times, but a lower priority "
             "than RepeatTimes")
        .AsDuplicable()
        .AsDispensable();
    AddOutput("Out",
              "(Tensor, default Tensor<float>). A tensor with rank in [1, 6]."
              "After tiling, size of each dimension of Output(Out) is equal "
              "to size of the corresponding dimension of Input(X) multiplying "
              "the corresponding value given by Attr(repeat_times).");
    AddAttr<std::vector<int>>("repeat_times",
                              "The number of repeat times for each dimension.")
        .SetDefault({});
    AddComment(R"DOC(
Tile operator repeats the input by given times number. You should set times
number for each dimension by providing attribute 'repeat_times'. The rank of X
should be in [1, 6]. Please note that size of 'repeat_times' must be the same
with X's rank. Following is a using case:

Input(X) is a 3-D tensor with shape [2, 3, 1]:

        [
           [[1], [2], [3]],
           [[4], [5], [6]]
        ]

Attr(repeat_times):  [1, 2, 2]

Output(Out) is a 3-D tensor with shape [2, 6, 2]:

        [
            [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
            [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
        ]

)DOC");
  }
};

class TileGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override {
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "TileGrad");
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")), "Input",
                   framework::GradVarName("Out"), "TileGrad");

    auto x_dims = ctx->GetInputDim("X");
    std::vector<int> repeat_times =
        ctx->Attrs().Get<std::vector<int>>("repeat_times");
    if (repeat_times.size() == 0) {
      repeat_times = std::vector<int>(x_dims.size(), -1);
    }

    auto out_dims = ctx->GetInputDim(framework::GradVarName("Out"));
    auto x_dim_vec = framework::vectorize<int>(x_dims);
    if (x_dim_vec.size() > repeat_times.size()) {
      auto diff = x_dim_vec.size() - repeat_times.size();
      repeat_times.insert(repeat_times.begin(), diff, -1);
    } else {
      auto diff = repeat_times.size() - x_dim_vec.size();
      x_dim_vec.insert(x_dim_vec.begin(), diff, -1);
    }

    for (size_t i = 0; i < repeat_times.size(); ++i) {
      if (repeat_times[i] == -1 || x_dim_vec[i] == -1) {
        continue;
      } else {
        if (ctx->IsRuntime()) {
          PADDLE_ENFORCE_EQ(
              x_dim_vec[i] * repeat_times[i], out_dims[i],
              platform::errors::InvalidArgument(
                  "The size (%d) of the dimension %d of Input(Out@GRAD) should "
                  "be equal to the multiplication of the crroresponding "
                  "dimension size of Input(X) (%d) and repeat_times (%d).",
                  out_dims[i], i, x_dim_vec[i], repeat_times[i]));
        }
      }
    }
    auto x_grad_name = framework::GradVarName("X");

    if (ctx->HasOutput(x_grad_name)) {
      ctx->SetOutputDim(x_grad_name, x_dims);
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.device_context());
  }

  framework::OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const Tensor& tensor,
      const framework::OpKernelType& expected_kernel_type) const override {
    if (var_name == "repeat_times_tensor" || var_name == "RepeatTimes") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
};

template <typename T>
class TileGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("tile_grad");
    op->SetInput("X", this->Input("X"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetInput("repeat_times_tensor", this->Input("repeat_times_tensor"));
    op->SetInput("RepeatTimes", this->Input("RepeatTimes"));
    op->SetAttrMap(this->Attrs());
  }
};

244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
template <typename T>
class TileDoubleGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("tile");
    op->SetInput("X", this->OutputGrad(framework::GradVarName("X")));
    op->SetOutput("Out", this->InputGrad(framework::GradVarName("Out")));
    if (this->HasInput("repeat_times_tensor")) {
      op->SetInput("repeat_times_tensor", this->Input("repeat_times_tensor"));
    }
    if (this->HasInput("RepeatTimes")) {
      op->SetInput("RepeatTimes", this->Input("RepeatTimes"));
    }
    op->SetAttrMap(this->Attrs());
  }
};

L
lilong12 已提交
264 265 266 267 268 269 270 271 272 273
DECLARE_NO_NEED_BUFFER_VARS_INFERER(TileGradNoNeedBufVarsInferer, "X");

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(tile, ops::TileOp, ops::TileOpMaker,
                  ops::TileGradOpMaker<paddle::framework::OpDesc>,
                  ops::TileGradOpMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(tile_grad, ops::TileGradOp,
274 275
                  ops::TileDoubleGradOpMaker<paddle::framework::OpDesc>,
                  ops::TileDoubleGradOpMaker<paddle::imperative::OpBase>,
L
lilong12 已提交
276 277 278 279 280 281 282 283 284 285 286 287
                  ops::TileGradNoNeedBufVarsInferer);
REGISTER_OP_CPU_KERNEL(
    tile, ops::TileKernel<paddle::platform::CPUDeviceContext, float>,
    ops::TileKernel<paddle::platform::CPUDeviceContext, double>,
    ops::TileKernel<paddle::platform::CPUDeviceContext, int>,
    ops::TileKernel<paddle::platform::CPUDeviceContext, int64_t>,
    ops::TileKernel<paddle::platform::CPUDeviceContext, bool>);
REGISTER_OP_CPU_KERNEL(
    tile_grad, ops::TileGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::TileGradKernel<paddle::platform::CPUDeviceContext, double>,
    ops::TileGradKernel<paddle::platform::CPUDeviceContext, int>,
    ops::TileGradKernel<paddle::platform::CPUDeviceContext, int64_t>);